
Math 4573: Number Theory

Lecturer: Professor James Cogdell
Notes by: Farhan Sadeek

Spring 2025

1 January 8, 2025
Dr. Cogdell explained the logistics of the class and also took attendance. This class will be no exams and
graded based on only homeworks.

1.1 Conjectures in Number Theory
� A number is divisible by 3 if the sum of its digits is divisible by 3.

� Fermat’s Last Theorem: There are no three positive integers a, b, and c that satisfy the equation
an + bn = cn for any integer value of n greater than 2.

� There are infinitely many primes.

�

p
2 is irrational.

� � is irrational.

� Every number can be written as the sum of four squares (Lagrange’s Four Square Theorem). For
example, 1000 = 102 + 302 + 02 + 02 and 999 = 302 + 92 + 32 + 32.

� The polynomial n2 � n + 41 produces prime numbers for n = 0; 1; 2; : : : ; 40, but not for n = 41.

� Euler conjectured that no nth power can be written as the sum of two nth powers for n > 2. This was
proven false by the counterexample 1445 = 275 + 845 + 1105 + 1335.

� Goldbach’s Conjecture: Every even integer greater than 2 can be written as the sum of two primes.
For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = 5 + 7, 14 = 7 + 7, 16 = 3 + 13,
18 = 7 + 11. This has been verified for numbers up to 100,000 but remains unproven.

Number theory is related to Abstract Algebra, but also intersects with other domains such as Combina-
torics, Analysis, and Topology. We will accept a few fundamental facts about Number Theory.

Fact 1
If S is a non-empty set of positive integers, then S contains a smallest element. This is known as the
Well-Ordering Principle.
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1.2 Divisibility
This concept has been known since the time of Euclid.

Definition 2
An integer b is divisible by an integer a 6= 0 if there is an integer x such that b = ax . We write this as
a j b. If b is not divisible by a, we write a - b.

There are two derivative notions:
� If 0 < a < b, then a is called a proper divisor of b.

� If ak jj b, it means ak j b and ak+1 - b.

Theorem 3
Let a, b, and c be integers. Then the following are true:

� If a j b, then a j bc .

� If a j b, then a j b + c .

� If a j b and a j c , then a j b + c .

� If a j b and b j a, then a = b or a = �b.

� If a j b and a > 0 and b > 0, then a � b.

� If m 6= 0 and a j b, then am j bm.

� If a j b1; a j b2; : : : ; a j bn, then a j∑n
i=1 bixi for any integers xi .

Theorem 4 (The Division Algorithm)
Given integers a and b with a > 0, there exist unique integers q and r such that

b = qa + r; 0 � r < a:

If a - b, then r satisfies the stronger inequality

0 < r < a:

Proof. Consider the arithmetic progression : : : ; b�3a; b�2a; b�a; b; b+a; b+2a; b+3a; : : :. In this sequence,
select the smallest non-negative member. This defines r and satisfies the inequalities of the theorem. Since r

is in the sequence, it can be written as b� qa. To prove the uniqueness of q and r , suppose there is another
pair q1 and r1 that satisfies the same conditions. We first prove that r = r1. If not, assume r < r1, so
0 < r1� r < a. But r1� r = a(q� q1), meaning a j (r1� r), which contradicts the fact that 0 < r1� r < a.
Thus, r = r1 and q = q1.
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Fact 5
If a j b, then r satisfies the stronger inequality 0 � r < a.

Fact 6
The Division Algorithm can be stated without the assumption a > 0. Given integers a and b with a 6= 0,
there exist integers q and r such that b = qa + r with 0 � jr j < jaj.

Definition 7 (Common Divisor)
The integer a is a common divisor of b and c if a j b and a j c . Since there is only a finite number of
divisors of any non-zero integer, there is only a finite number of common divisors of b and c except in the
case b = c = 0.

If at least one of b and c is not 0, the greatest common divisor is called the gcd gcd(b; c) (greatest
common divisor of b and c), and is denoted by (b; c). Similarly, we have the greatest common divisor g of
the integers b1; b2; : : : ; bn (not all 0) denoted by (b1; b2; : : : ; bn).

Theorem 8
If g is the gcd of b and c , then there exist integers x0 and y0 such that

g = bx0 + cy0

2 January 10, 2025
Dr. Cogdell takes attendance so I will have to be in class every single day.

Definition 9 (Common Divisor)
The integer a is a common divisor of b and c if a j b and a j c . Since there is only a finite number of
divisors of any nonzero integer, there is only a finite number of common divisors of b and c , except in the
case b = c = 0. If at least one of b and c is not 0, the greatest among their common divisors is called the
greatest common divisor of b and c and is denoted by (b; c). Similarly, we denote the greatest common
divisor g of the integers b1; b2; : : : ; bn, not all zero, by (b1; b2; : : : ; bn).

Fact 10
Another fundamental way to to state this is that the linear combination of b and c is with integgral
multipliers x0 and y0. This assertion of holds for any finite collection.
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Proof. Consider the following linear combinations {bx + cy} where x and y are all integers. Note this also
contains x = y = 0. Choose bx0 + cy0 is the least positive integer l in the set.

We need to prove that l j b and l j c . We will do this via indirect proof. If we assume that l - b, we will
obtain a contradiction. From l - b, there are integers q and r such that b = lq + r where 0 < r < l . Since l

is the least positive integer in the set, we can write r = bx1 + cy1 for some integers x1 and y1. So we have

r = b � lq = b � q(bx0 � cy0) = b(1� qx0) + c(�qy0)

and this r is in the set bx+cy . This contradicts the fact that l is the least positive integer in the set {bx+cy}.
Thus, we have shown that l j b.

Since g is the greatest common divisor of b and c , we may write l = bx0 + cy0 = g(Bx0 + Cy0).
Then, g j l and we have shown g � l . Now, g < l is impossible since, gis the greatest common divisor, so
g = l = bx0 + cy0.

Theorem 11
The greatest common divisor g of b and c can be characterized in the following two ways:

� It is the least positive value of bx + cy where x and y range over all integers.

� It is the positive common divisor of b and c that is divisible by every common divisor.

Proof. Part 1 follows from the proof of Theorem 8. To prove part 2, we observe that if d is any common
divisor of b and c , then d j g by part 3 of Theorem 3. Moreover, there cannot be two distinct integers with
property 2, because of Theorem 3, part 4.

Remark 12. If an integer d is expressible in the form d = bx + cy , then d is not necessarily the gcd(b; c).
However, it does follow from such an equation that (b; c) is a divisor of d . In particular, if bx + cy = 1 for
some integers x and y , then (b; c) = 1.

Theorem 13
Given any integers b1; b2; : : : ; bn not all zero, with greatest common divisor g, there exist integers
x1; x2; : : : ; xn such that

g = (b1; b2; : : : ; bn) =

n∑
j=1

bjxj :

Furthermore, g is the least positive value of the linear form
∑n

j=1 bjyj where the yj range over all integers;
also g is the positive common divisor of b1; b2; : : : ; bn that is divisible by every common divisor.

Proof. Consider the set S =
{∑n

j=1 bjyj j yj 2 Z
}

. Since not all bj are zero, there exists a non-zero integer
in S. Let g be the smallest positive integer in S. Then g can be written as g =

∑n
j=1 bjxj for some integers

xj .
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We claim that g is the greatest common divisor of b1; b2; : : : ; bn. First, we show that g is a common
divisor of b1; b2; : : : ; bn. For each bi , we have

bi =

n∑
j=1

bj�i j ;

where �i j is the Kronecker delta. Since g divides each term on the right-hand side, it follows that g j bi for all
i .

Next, we show that g is the greatest common divisor. Let d be any common divisor of b1; b2; : : : ; bn.
Then d j∑n

j=1 bjxj , so d j g. Therefore, g is the greatest common divisor of b1; b2; : : : ; bn.
Finally, we show that g is the least positive value of the linear form

∑n
j=1 bjyj . Suppose there exists a

positive integer h such that h =
∑n

j=1 bjzj and h < g. Then h is in S, which contradicts the minimality of g.
Therefore, g is the least positive value of the linear form.

Thus, we have shown that g = (b1; b2; : : : ; bn) =
∑n

j=1 bjxj and g is the least positive value of the linear
form

∑n
j=1 bjyj where the yj range over all integers. Also, g is the positive common divisor of b1; b2; : : : ; bn

that is divisible by every common divisor.

Theorem 14
For any positive integerm we have

(ma;mb) = m(a; b)

Proof. By Theorem 11 we have

(ma;mb) = least positive value of max +mby

= m � fleast positive value of ax + byg
= m(a; b):

Theorem 15
If d j a and d j b, d > 0, then

(
a

b
;
b

d
) =

1

d
(a; b)

If (a; b) = g, then
(
a

g
;
b

g
) = 1

Proof. The second assertion is the special case of the first obtained by using the greatest common divisor g
of a and b in the role of d . The first assertion in turn is a direct consequence of Theorem 14 obtained by
replacing m; a; b in that theorem by d; ad ;

b
d respectively.
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Theorem 16
If (a;m) = (b;m) = 1, then (ab;m) = 1

Proof. By Theorem 8, there exist integers x0; y0; x1; y1 such that

1 = ax0 +my0 = bx1 +my1:

Thus, we may write
ax0 � bx1 = m(y1 � y0):

Let y2 = y1 � y0. Then we have
ax0 � bx1 = my2:

From the equation ax0 � bx1 = my2, we note, by part 3 Theorem 3, that any common divisor of a and b is a
divisor of m. Hence, (a; b;m) = 1.

Theorem 17
For any integers a and b, the following equalities hold:

(a; b) = (b; a) = (a;�b) = (a; b + ax):

Proof. The equality (a; b) = (b; a) follows from the definition of the greatest common divisor, as the order of
the arguments does not affect the set of common divisors.

The equality (a; b) = (a;�b) holds because the set of common divisors of a and b is the same as the set
of common divisors of a and �b.

To prove (a; b) = (a; b + ax), we note that any common divisor of a and b is also a divisor of b + ax

(since b + ax = b + a � x). Conversely, any common divisor of a and b + ax is also a divisor of b (since
b = (b + ax) � a � x). Therefore, the set of common divisors of a and b is the same as the set of common
divisors of a and b + ax , which implies that (a; b) = (a; b + ax).

Theorem 18
If c j ab and (b; c) = 1, then c j a.

Proof. Since (b; c) = 1, there exist integers x and y such that bx + cy = 1. Multiplying both sides by a, we
get

abx + acy = a:

Since c j ab, there exists an integer k such that ab = ck . Substituting this into the equation, we get

ckx + acy = a:

Factoring out c from the left-hand side, we get

c(kx + ay) = a:
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Therefore, c j a.

3 January 13, 2025

3.1 Euclidean Algorithm
Given two integers b and c , now we can generate the greatest common divisor. There is no algorithm to this
problem, but there is an algorithm.

Question 19. Given a set of integers (bx + cy) how to find the greatest common divisor?

Consider the case b = 963 and c = 657. If we divide c into b, we get the quotient q = 1 and the
remainder r = 306. We can write this as b = qc + r or r = b� cq. In particular, 306 = 963� 1 � 657. Now
(b; c) = (b � cq; c) by replacing a and x by c and �q in Theorem 17, so we see that

(963; 657) = (963� 1 � 657; 657) = (306; 657):

The integer 963 has been replaced by the smaller integer 306, and this suggests that the procedure be repeated.
So we divide 306 into 657 to get a quotient 2 and a remainder 45, and

(306; 657) = (306; 657� 2 � 306) = (306; 45):

Next, 45 is divided into 306 with quotient 6 and remainder 36, then 36 is divided into 45 with quotient 1 and
remainder 9. We conclude that

(963; 657) = (306; 657) = (306; 45) = (45; 36) = (36; 9):

Thus (963; 657) = 9, and we can express 9 as a linear combination of 963 and 657 by sequentially writing
each remainder as a linear combination of the two original numbers:

306 = 963� 657;

45 = 657� 2 � 306 = 657� 2 � (963� 657) = 3 � 657� 2 � 963;
36 = 306� 6 � 45 = (963� 657)� 6 � (3 � 657� 2 � 963) = 13 � 963� 19 � 657;
9 = 45� 36 = 3 � 657� 2 � 963� (13 � 963� 19 � 657) = 22 � 657� 15 � 963:

In terms of Theorem 8, where g = (b; c) = bx0 + cy0, beginning with b = 963 and c = 657 we have used a
procedure called the Euclidean algorithm to find g = 9, x0 = �15, y0 = 22. Of course, these values for x0
and y0 are not unique: �15 + 657k and 22� 963k will do where k is any integer.

To find the greatest common divisor (b; c) of any two integers b and c , we now generalize what is done in
the special case above. The process will also give integers x0 and y0 satisfying the equation bx0+cy0 = (b; c).
The case c = 0 is special: (b; 0) = jbj. For c 6= 0, we observe that (b; c) = (b;�c) by Theorem 17, and
hence, we may presume that c is positive.
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Theorem 20 (The Euclidean Algorithm)
Given integers b and c > 0, we make a repeated application of the division algorithm, Theorem 4, to
obtain a series of equations:

b = cq1 + r1; 0 < r1 < c;

c = r1q2 + r2; 0 < r2 < r1;

r1 = r2q3 + r3; 0 < r3 < r2;

... ...
rj�2 = rj�1qj + rj ; 0 < rj < rj�1;

rj�1 = rjqj+1:

The greatest common divisor (b; c) of b and c is rj , the last nonzero remainder in the division process.
Values of x0 and y0 in (b; c) = bx0 + cy0 can be obtained by writing each ri as a linear combination of b
and c .

Proof. The chain of equations is obtained by dividing c into b, r1 into c , r2 into r1, and so on, until rj
into rj�1. The process stops when the division is exact, that is, when the remainder is zero. Thus, in our
application of Theorem 4, we have written the inequalities for the remainder without an equality sign. For
example, 0 < r1 < c instead of 0 � r1 < c , because if r1 were equal to zero, the chain would stop at the first
equation b = cq1, in which case the greatest common divisor of b and c would be c .

We now prove that rj is the greatest common divisor g of b and c . By Theorem 17, we observe that

(b; c) = (c; r1) = (r1; r2) = � � � = (rj�1; rj) = (rj ; 0) = rj :

To see that rj is a linear combination of b and c , we argue by induction that each ri is a linear combination
of b and c . Clearly, r1 is such a linear combination, and likewise r2. In general, ri is a linear combination of ri�1
and ri�2. By the inductive hypothesis, we may suppose that these latter two numbers are linear combinations
of b and c , and it follows that ri is also a linear combination of b and c .

4 January 15, 2025

Example 21
We will find the g.c.d of 42823 and 6409.

Solution. We apply the Euclidean algorithm to divide c into b, where b = 42823 and c = 6409. We obtain
a quotient q1 = 6 and a remainder r1 = 4369. Continuing, if we divide 4369 into 6409, we get a quotient
q2 = 1 and a remainder r2 = 2040. Dividing 2040 into 4369 gives q3 = 2 and r3 = 289. Dividing 289 into
2040 gives q4 = 7 and r4 = 17. Since 17 is an exact divisor of 289, the solution is that the g.c.d is 17.
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We can write this in tabular form:

42823 = 6 � 6409 + 4369;

6409 = 1 � 4369 + 2040;

4369 = 2 � 2040 + 289;

2040 = 7 � 289 + 17;

289 = 17 � 17:

Thus, (42823; 6409) = (6409; 4369) = (4369; 2040) = (2040; 289) = (289; 17) = 17.

Example 22
Find integers x and y such that 42823x + 6409y = 17.

Solution. We find integers x and y such that 42823x + 6409y = 17.
Here it is natural to consider i = 1; 2; : : :, but to initiate the process we also consider i = 0 and i = �1.

We put r�1 = 42823, and write
42823 � 1 + 6409 � 0 = 42823:

Similarly, we put r0 = 6409, and write

42823 � 0 + 6409 � 1 = 6409:

We multiply the second of these equations by q1 = 6, and subtract the result from the first equation, to obtain

42823 � 1 + 6409 � (�6) = 4369:

We multiply this equation by q2 = 1, and subtract it from the preceding equation to find that

42823 � (�1) + 6409 � 7 = 2040:

We multiply this by q3 = 2, and subtract the result from the preceding equation to find that

42823 � 3 + 6409 � (�20) = 289:

Next we multiply this by q4 = 7, and subtract the result from the preceding equation to find that

42823 � (�22) + 6409 � 147 = 17:

On dividing 17 into 289, we find that q5 = 17 and that 289 = 17 � 17. Thus r4 is the last positive remainder,
so that g = 17, and we may take x = �22, y = 147. These values of x and y are not the only ones possible.
In Section 5.1, an analysis of all solutions of a linear equation is given.

Remark 23. Section 5.1 on Analysis
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Definition 24
The integers a1; a2; : : : ; an all different from zero, have a common b if ai j b for i = 1; 2; : : : ; n. The least
positive multiple is is called least common multiple and it’s denoted [a1; a2; : : : ; an]

Theorem 25
If b is any common multiple of a1; a2; : : : ; an, then [a1; a2; : : : ; an] j b. This is the same as saying that if
h denotes [a1; a2; : : : ; an], then 0;�h;�2h;�3; : : : comprise all the common multiples of a1; a2; : : : ; an.

Proof. Let m be any common multiple and divide m by h. By Division Algorithm, there is a quotient q and
a remainder r such that m = qh + r , where 0 6 r < h. We must prove that r = 0. If r 6= �, we argue as
follows. For each i = 1; 2; : : : ; n, we know that ai j h and ai j m, so that ai j r . Thus r is a positive common
multiple of a1; a2; : : : ; an contrary to the fact that h is the least of all common positive multiple.

Theorem 26
If m > 0 [ma;mb] = m[a; b]. Also, [a; b] � (a; b) = jabj

Proof. Let H = [ma;mb] and h = [a; b]. Then mh is a multiple of ma and mb, so that mh j H. Also, H is
a multiple of both ma and mb, so H=m is a multiple of a and b. Thus, H=m j h, from which it follows that
mh = H, and this establishes the first part of the theorem.

It will suffice to prove the second part for positive integers a and b, since [a;�b] = [a; b]. We begin with
the special case where (a; b) = 1. Now [a; b] is a multiple of a, say ma. Then b j ma and (a; b) = 1, so by
Theorem 18 we conclude that b j m. Hence b j m, ba j ma. But ba, being a positive common multiple of b
and a, cannot be less than the least common multiple, so ba = ma = [a; b].

Turning to the general case where (a; b) = g > 1, we have (a=g; b=g) = 1 by Theorem 15. Applying the
result of the preceding paragraph, we obtain [

a

g
;
b

g

]
=

ab

g2
:

Multiplying by g2 and using Theorem 14 as well as the first part of the present theorem, we get [a; b](a; b) =

ab.

5 January 17, 2025

Definition 27
An integer p > 1 is called a prime number or prime in case there is no divisor of d of p satisfying
1 < d < p. An integer a > 1 is not a prime, it is called composite number.
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Example 28
2; 3; 5; 7 are primes, but 4; 6; 8; 9 are composite.

Theorem 29
Every integer n greater than 1 can be expressed as a product of primes.

Proof. If the integer n is a prime, then the integer itself stands as a ‘product’ with a single factor. Otherwise,
n it can be factored into say n1; n2, where 1 < n1 < n and 1 < n2 < n. If n1 is prime then let it stand.
Otherwise, it will factor into say n3; n4 where 1 < n3 < n and 1 < n4 < n. Simliarly, for n2. The process
of writing each composite number that arises as a product of factors must termiate because the factors are
smaller than the composite itself, yet each factor is an integer greater than 1. Thus we can conclude n as a
product of q primes, and since the prime factors are not necessarily so the result can be written in the form

n = p�1
1 p�2

2 p�3
3 : : : p�n

n

where the p1; p2; p3; : : : ; pn are distinct primes and �1; �2; : : : ; �n are positive

Fact 30
This representation of n as a product of primes is called the canonical factoring of n into prime numbers.
It turns out that the representation is unique in the sense that, for a fixed n any other representation is
merely a reordering, or a perumtation of factors, nevertheles it requires proof.

Theorem 31
If p j ab; p being a prime, then p j a or p j b. More generally, if p j a1a2, then p at least one factor of a1.

Proof. If p - b, since (a; p) = 1, by a previous theorem, p j b. We may regard as a proof of the general cae
of the statement mathematical induction. So we assume that the property holds when n divides a factor with
fewer than n primes. Now, if p j a1a2 : : : an, that is p j ac , where c = a1a2 : : : an, then p j a1 or p j c .If p j c ,
we apply the induction hypthesis to conclude that p j i , for some subscript i = 1; 2; : : : ; n.

Theorem 32 (The Fundamental Theorem of Arithmetic or the Unique Factorization Theorem)
The facoring of n > 1 into primes is unique and apart from the order of the primes.

Proof. Suppose there is an integer n with two different factorizations. Dividing out any primes common to
the two representations, we would have an equality of the form

p1p2 � � � pk = q1q2 � � � qs

where the factors pi and qj are primes, not necessarily all distinct, but where no prime on the left side occurs
on the right side. But this is impossible because p1 j q1q2 � � � qs , so by Theorem 31, p1 is a divisor of at least
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one of the qj . That is, p1 must be identical with at least one of the qj . This contradicts our assumption that
no prime on the left side occurs on the right side. Therefore, the factorization of n into primes is unique.

In the applications of the fundamental theorem, we frequently write the integer a >6 1, in the form,

a =

n∏
i=1

p�i

i

where �(p) is a non-negative integer for all sufficiently large primes, p. If a = 1, then �(p) = 0, for all primes,
p and the product may be considered to be empty. We may write a =

∏
p�

It a =
∏

p p
�(p); b =

∏
p p

�(p); c =
∏

p p
�(p) and a = b = c then �(p)+�(p) = (p) for all p. So, a j c ,

we must note that �(p) 6 (p) for all p that we may define an integer b =
∏

p p
�(p) with � = (p)� �(p).

So a j c . Note that the greatest common divisor and least common multiple can be written as

(a; b) =
∏
p

pmin(�(p);�(p))

[a; b] =
∏
p

pmin(�(p);�(p))

Example 33
a = 108; b = 225, then a = 22 � 33 � 50 and b = 20 � 32 � 52. So (a; b) = 20 � 32 � 50 = 9, and
[a; b] = 22 � 33 � 52 = 2700.

Definition 34
a is a square (or perfect square) if it can be written as n2

Remark 35. a is auare free if 1 is the largest square dividing a. So �(p) is square free if the only numbers
are 0 and 1.

Theorem 36 (Euclid)
The number of primes is inifite. i.e. there is no end to the sequence of primes.

2; 3; 5; 7; 11; 13; : : :

Proof. Suppose that p1; p2; : : : ; pn are the first r primes. Then form the number

n = 1 + p1p2 : : : pr

Note that n is not divisible by p1 or p2 or : : :, or pr Hencce, ayny prime divisor is distinct from p1; p2; : : : ; pr .
Since n is neither a prime or has a prime factor factor p. This impl
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6 January 22, 2025

Theorem 37
There are arbitrarily large gapes in the series of primes stated otherwise, given any k , there exit k conse-
quetive composite integers.

Proof. Consider the integers

(k + 1)! + 2; (k + 1)! + 3 : : : ; (k + 1)! + k; (k + 1)! + k + 1

Every one of these composite because j divides (k + 1)! and j 6 k .

The primes are spaced rather irregularly, as the last theorem suggests. If we denote the number of pirmes
that do not exceed x by �(x), but we may ask about the nature of this function. Because of this irregular
occurence of primes, we cannnot expect a simple formula for �(x), but we may week to estimate the rate of
it’s growth.

Theorem 38
For any real number y > 2, we have ∑

p6y

1

p
log log y � 1

6.1 The Binomial Theorem
We first define the binomial coefficients and describe them combinatorially.

Definition 39
Let � be any real number, and let k be a non-negative integer. Then the binomial coefficient

(
�
k

)
is given

by the formula: (
�

k

)
=

�(�� 1)(�� 2) � � � (�� k + 1)

k!

Suppose that n and k are both integers. From the formula, we see that if 0 � k � n, then(
n

k

)
=

n!

k!(n � k)!
;

whereas if n < k , then (
n

k

)
= 0:

Here we employ the convention 0! = 1.
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Theorem 40
Let S be a set containing exactly n elements. For any non-negative integer k , the number of subsets S

containing precisely k elements
(
n
k

)
.

Proof. Let S be a set containing exactly n elements. For any non-negative integer k , the number of subsets
S containing precisely k elements is

(
n
k

)
.

Suppose that S = f1; 2; : : : ; ng. These numbers may be listed in various orders, called permutations, here
denoted by �. There are n! of these permutations �, because the first term may be any one of the n numbers,
the second term any one of the n� 1 remaining numbers, the third term any one of the still remaining n� 2

numbers, and so on.
We count the permutations in a way that involves the number X of subsets containing precisely k elements.

Let N be a specific subset of S with k elements. There are k! permutations of the elements of N, each
permutation having k terms. Similarly, there are (n� k)! permutations of the n� k elements not in N. If we
attach any one of these (n � k)! permutations to the right end of any one of the k! previous permutations,
the ordered sequence of n elements thus obtained is one of the permutations � of S. Thus we can generate
k!(n � k)! of the permutations � in this way. To get all the permutations � of S, we repeat this procedure
with N replaced by each of the subsets in question. Let X denote the number of these subsets. Then there
are k!(n � k)!X permutations �, and equating this to n! we find that

X =
n!

k!(n � k)!
:

We now see that the quotient n!
k!(n�k)! is an integer, because it represents the number of ways of doing

something. In this way, combinatorial interpretations can be useful in number theory.

Theorem 41
The product of any k consecutive integers is divisible by k!.

Proof. Let’s write the product as n(n � 1) � � � (n � k + 1). If n � k , then we write this in the form
(
n
k

) � k!
and note that

(
n
k

)
is an integer, by Theorem 40. If 0 � n < k , then one of the factors of our product is 0,

so the product vanishes, and is therefore a multiple of k! in this case also. Finally, if n < 0, we note that the
product may be written as

(�1)k(�n)(�n + 1) � � � (�n + k � 1) = (�1)k
(�n + k � 1

k

)
k!:

Note that in this case the upper member �n + k � 1 is at least k , so that by Theorem 40 the binomial
coefficient is an integer.

In the formula for the binomial coefficients we note a symmetry:(
n

k

)
=

(
n

n � k

)
:

14



Theorem 42 (The Binomial Theorem)
For any integer n > 1, and any real numbers x and y , we have

(x + y)n =

n∑
k=0

(
n

k

)
xkyn�k :

Proof. We first consider the product and obtain
n∏

i=1

(xi + yi)

On multiplying this out, we obtain 2n monomial terms of the form∏
i2A

xi
∏
j2A

yj

where A is any subset of {1, 2, …, n}. For each fixed k; 0 6 k 6 n, we consider the monomial terms obtained
from those subsets of A of {1, 2, 3, …, n} having exactly k elements. The number of such subsets is

(
n
k

)
, and

the set xi = x and yi = y for all i and note that such a monomial has a value of xkyn�k for the subsets in
question. Since there are

(
n
k

)

7 January 24, 2025
The binomial theorem can also be proved analytically by appealing the following simple results.

Lemma 43
Let P (z) =

∑n
k=0 akz

k be a polynomial with real coefficients. Then ar =
P (r)(0)

r ! for r = 0; 1; 2; : : : ; n,
where P (r)(0) denotes the r th derivative of P (z) evaluated at z = 0.

The binomial coefficients arise in many identities, The simplest relations is the recurrence relation(
n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)
Maybe used in many ways, for example to construct the Pascal’s Triangle which is the infinite array of
numbers. The pascal’s triangle could be used to expand the binomial theorem, for example (x + y)5 =

1x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + 1y5

15



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

This is also obtained by the proceeding row, just to left and just to the right. In general the nth row is the
coefficients of the expansion of (x + y)n�1

7.1 Congruences

7.1.1 Congruences

A congruence is nothing more than the statement about divisibility.

Definition 44
If an integer m 6= 0, divide the difference a�b, then we say that a is congruent to b modulo m, and write
we will write a � (b mod m). If a � b is not divisible by n, we say that a is not congruent to b modulo
m, and write a 6� b mod m.

Fact 45
Since a�b is divisible by m, if a�b is divisible by �m, we generally take the remainder to be the smallest
positive integer.

Theorem 46
Let a; b; c; d 2 Z. Then

1. a � b (mod m), b � a (mod m), and a � b � 0 (mod m) are equivalent statements.

2. If a � b (mod m) and b � c (mod m), then a � c (mod m).

3. If a � b (mod m) and c � d (mod m), then a + c � b + d (mod m).

4. If a � b (mod m) and c � d (mod m), then ac � bd (mod m).

5. If a � b (mod m) and d j m, d > 0, then a � b (mod d).

6. If a � b (mod m), then ac � bc (mod mc) for c > 0.

16



Theorem 47
Let f denote a polynomial with integral coefficients. If a � b (mod m), then f (a) � f (b) (mod m).

Proof. We can suppose f (x) = cnx
n + cn�1x

n�1 + � � �+ c0 where the ci are integers. Since a � b (mod m),
we can apply Theorem 46, part 4, repeatedly to find a2 � b2, a3 � b3, : : :, an � bn (mod m), and then
cia

j � cib
j (mod m) and finally cna

n + cn�1a
n�1 + � � �+ c0 � cnb

n + cn�1b
n�1 + � � �+ c0 (mod m).

Theorem 48
For a; b;m 2 Z, m > 0, the situations hold:

� ax � ay (mod m) if an only if x � y (mod m
(a;m))

� If ax � ay (mod m) and (a;m) = 1, then x � y (mod m).

� x � y (mod mi) for i = 1; 2; : : : ; r if and only if x � y (mod [m1; m2; : : : ; m])

Proof. � If ax � ay (mod m), then ay � ax = mz for some integer z . Hence we have

a(y � x) = mz;

and thus
a

(a;m)
(y � x) =

m

(a;m)
z:

But
(

a
(a;m) ;

m
(a;m)

)
= 1 by Theorem 15 and therefore m

(a;m) j (y � x) by Theorem 18. That is,

x � y (mod
m

(a;m)
):

� Conversely, if x � y (mod m
(a;m)), we multiply by a to get ax � ay (mod a� m

(a;m)) by use of Theorem 46,
part 6. But (a;m) is a divisor of a, so we can write ax � ay (mod m) by Theorem 46, part 5.

For example, 15x � 15y (mod 10) is equivalent to x � y (mod 2), which amounts to saying that x and
y have the same parity.

Proof. � If x � y (mod mi) for i = 1; 2; : : : ; r , then mi j (y � x) for i = 1; 2; : : : ; r . That is, y � x is a
common multiple of m1; m2; : : : ; mr , and therefore (see Theorem 25) [m1; m2; : : : ; mr ] j (y � x). This
implies x � y (mod [m1; m2; : : : ; mr ]).

� If x � y (mod [m1; m2; : : : ; mr ]), then x � y (mod mi) by Theorem 46 part 5, since mi j [m1; m2; : : : ; mr ].

8 January 27, 2025
In deadling with integers modulo m, we are essentially peforming the aritmetic but are disregarding the
multiples of m. In a sense, not disregarding between a and a + mx , where x 2 Z. Given any integer, a,
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let q and r be the quotient and the remainder on m; thus a = qm + r . Now a � r (mod m), and since r

satistifies the inequalities 0 6 r < m, we see that every integer is congruent modulo m to one of the values
0; 1; 2; : : : ; m� 1. Also, it is clear that no two of these m integers are congruent modulo m. These m values
constitute a complete residue system modulo m, and we now give a general definition of this term.

Definition 49
If x � y (mod m) then y is called a residue of x modulo m. A set x1; x2; : : : ; xm is called a complete
residue system modulo m if for every integer y there is one and only xj such that y � xj (mod m).

It is obvious that there are infinitely many complete residue systems modulo m, the set 1; 2; : : : ; m�1; m

being another example.
A set of m integers forms a complete residue system modulo m if and only if no two integers in the set

are congruent modulo m.
For fixed integer x � a (mod m) is the arithmetic progression

: : : ; a � 3m; a � 2m; a �m; a; a +m; a + 2m; a + 3m; : : :

This set is called a residue class or congruence class modulo m. There are m distinct residue classe modulo
m, obtained from taking a = 0; 1; 2; : : : ; m.

Theorem 50
If b � c (mod m), then (b;m) = (c;m).

Proof. We have c = b +mx for some x 2 Z. Let d = (b;m). Then d j b and d j m. Since d j m, we have
d j mx . Therefore, d j (b+mx), which implies d j c . Thus, d is a common divisor of c and m, so d � (c;m).

Conversely, let d 0 = (c;m). Then d 0 j c and d 0 j m. Since c = b + mx , we have d 0 j (b + mx). But
d 0 j m, so d 0 j b. Thus, d 0 is a common divisor of b and m, so d 0 � (b;m).

Therefore, (b;m) = (c;m).

Definition 51
A reduced residue system modulo m is a set of integers ri such that (ri ; m) = 1; ri 6� rj (mod m) if
i 6= j , and such that every x prime to m is congruent modulo m to some member ri of the set.

Remark 52. In view of the preceding theorem, it is clear that a reduced residue system modulo m can be
obtained by deleting from a complete residue system modulo m and those members that are not relatively
prime to m. Furthermore, all reduced residue system modulo m have the same number of members, namely
�(m). This is called Euler’s � function, sometimes called the totient function. By applying the definition
of �(m), we can see that �(p) = p � 1 for any prime p.

Theorem 53
The number �(m) is the number of positive integers less than or equal to m that are relatively prime to
m.
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Euler’s function phi(m) is of considerable interest. We will consider that in further sections.

Theorem 54
Let a;m = 1. Let r1; r2; : : : ; rn be a complete, or a reduced residue system modulo m. Then ar1; ar2; : : : ; arn
is a complete, or a reduced, residue system, respectively, modulo m.

Proof. If ri ; m = 1, then ari ; m = 1. There are the same number of ar1; ar2; : : : ; arn as of r1; r2; : : : ; rn.
Therefore, we need to only show that ari 6� arj (mod m) if i 6= j . But Theorem 48 shows that ari � arj

(mod m) implies ri � rj (mod m), hence i = j .

Example 55
For example, since 1; 2; 3; 4 is a reduced residue system modulo 5, so also is 2; 4; 6; 8. Since 1; 3; 7; 9 is
a reduced residue system modulo 10, so also is 3; 9; 21; 27.

Theorem 56 (Fermat’s Little Theorem)
If p - a, then (a; p) = 1 and ap�1 � 1 (mod p). To find '(p), we refer to Theorem 53. All the integers
1; 2; : : : ; p � 1 are relatively prime to p. Thus we have '(p) = p � 1, and the first part of Fermat’s
theorem follows. The second part is now obvious.

9 January 29, 2025

Theorem 57 (Euler’s generalization of Fermat’s Theorem)
If (a;m) = 1 then

a'(m) � 1 (mod m)

Proof. Let r1; r2; : : : ; r'(m) be a reduced residue system modulo m. Then by Definition 100, ar1; ar2; : : : ; ar'(m)

is also a reduced residue system modulo m. Hence, corresponding to each ri there is one and only one arj

such that ri � arj (mod m). Furthermore, different ri will have different corresponding arj . This means that
the numbers ar1; ar2; : : : ; ar'(m) are just the residues modulo m of r1; r2; : : : ; r'(m), but not necessarily in the
same order. Multiplying and using Theorem 46, part 4, we obtain

'(m)∏
j=1

arj �
'(m)∏
i=1

ri (mod m);

and hence

a'(m)

'(m)∏
j=1

rj �
'(m)∏
j=1

rj (mod m):

Now (rj ; m) = 1, so we can use Theorem 48, part 2, to cancel the rj and we obtain a'(m) � 1 (mod m).
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Theorem 58
If (a;m) = 1. then there is an x such that ax = 1 (mod m) and any two such x are congurent pmodm.
If (a;m) > 1, then there is no such x .

Proof. If a;m = 1, then there exist x and y such that ax +my = 1 That is. ax � 1, Conversely, if ax � 1

(mod m), then there is a y such that ax + by = 1, so that (a;m) = 1. Thus if, ax1 � ax2 � 1 (mod m),
then (a;m) = 1, and that follows from Theorem 48, part 2.

Fact 59
The relation ax � 1 (mod m) asserts that there is a residue system x that is multiplicative inverse of the
class a. To avoid confusion rational number a�1 = 1

m , we denote that this residue �a. The value of �a is
quickly found by employing the Eucledian Algorithm, as asserted. The existence of �a is also evident from
Definition 100, if (a;m) = 1 then the members a; 2a; : : : ; ma form a complete system of residues, which
is to say, that is one of them is � 1 (mod m). In additional it can be inferred in the form �a = a'(m) � 1

Lemma 60
Let p be a prime number. Then x2 � 1 (mod m) () x = �1 (mod m). In a later section, we will
establish a more general result which the following is easily derived, but we are giving a direct proof for
now, because the observation has many useful applications.

Proof. This is a quadratic congruence. It may be expressed as x2�1 � 0 (mod m). That is (x�1)(x�2) � 0

(mod p), which is to say that j (x � 1)(x � 1) j. By Theorem 31 it follows that p j (x � 1) or p j (x +1). So
x � 1 (mod m) or x � �1 (mod m) .Conversely, it either

Theorem 61 (Wilson’s Theorem)
If p is a prime, then (p � 1) � �1 (mod m)

10 January 31, 2025
Proof. If p = 2 or p = 3, the congruence is easily verified. Thus we may assume that p � 5. Suppose that
1 � a � p � 1. Then (a; p) = 1, so that by Theorem 58 there is a unique integer �a such that 1 � �a � p � 1

and a�a � 1 (mod p). By a second application of Theorem 58 we find that if a is given then there is exactly
one �a, 1 � �a � p � 1, such that a�a � 1 (mod p). Thus a and �a form a pair whose combined contribution
to (p � 1)! is � 1 (mod p). However, a little care is called for because it may happen that a = �a. This is
equivalent to the assertion that a2 � 1 (mod p), and by Lemma 60 we see that this is in turn equivalent to
a � 1 or a � p � 1. That is, �1 = 1 and p � 1 = p � 1, but if 2 � a � p � 2 then a 6= �a. By pairing these
latter residues in this manner we find that

∏p�2
a=2 a � 1 (mod p), so that (p� 1)! � 1 �∏p�2

a=2 a � (p� 1) � �1
(mod p).
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Theorem 62
Let p denote a prime. Then x2 � �1 (mod m) has solution () p = 2 or p � 1 (mod 4)

Proof. If p = 2, we have the solution x = 1. FOr any odd prime p, we can write Wilson’s theorem in the form(
1 � 2 : : : j : : : p � 1

2

)(
p + 1

2
: : : (p � j) : : : (p � 2)(p � 1)

)
� �1 (mod p)

The product on the left has divided into two parts, each with the same number of factors. Pairing off j in the
first half with p � j in the second half, we can rewrite the congruence in the form

p�1
2∏

j=1

j(p � j) � (mod p)

But j(p � j) � �j2 (mod p), and so the above is
p�1
2∏

j=1

(�j2) � (�1) p�1
2

 p�1
2∏

j=1

j (mod p):


If p � 1 (mod 4) then the first factor on the right is 1, and we see that x =

(
p�1
2

)
! is a solution of x2 � �1

(mod p).
Suppose, conversely, that there is an x such that x2 � �1 (mod p). We note that for such an x; p - x .

We suppose that p > 2, and raise both sides of the congruence to the power p�1
2 to see that

(�1) p�1
2 � (x2)

p�1
2 = xp�1 (mod p)

.
By Fermat’s congruence, the right side here is � 1 (mod p). The left hand side is �1. Since �1 6� 1

(mod m), we deduce that
(�1) p�1

2 = 1:

Thus p�1
2 is even; that is, p � 1 (mod 4).

In the case p � 1 (mod 4), we have expilcitly constructed a solution of the congruence, x2 � �1
(mod p). However, the amout of calculation required to evaluate p�1

2 ! (mod p) is no smaller than the
exhausting x = 1; x2; : : : ; x = p�1

2 . In a later section, we will develop a method by which the desired x can
be quickly determined.

11 February 3, 2025
Theorem 62 provides a key piece of information needed to determine which integers can be written as the sum
of two squares. We began by showing that a a class of prime numbers can be represented in this manner.
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Lemma 63
If p is a prime numebr and p � 1 (mod 4) then there exist positive integers a and b such that a2+b2 = p:

This was first stated in 1632 by Albert Girard on the basis of numericla evidence. The first proof was
given by Fermat in 1654.

Lemma 64
Let q be prime of the form a2 + b2. If q � 3 (mod 4). then q j a and q j b.

Theorem 65 (Fermat)
Write the canonical factorization of n in the form

n = 2�
∏

p�1(4)

p�
∏

p�3(4)

q

Then n can be expressed as a sum of the two squres () all exponents  are there.

Fact 66
We note that the identity holds:

(a2 + b2)(c2 + d2) = (ac � bd)2 + (ac + bc)2

The Theorem of Fermat is the first of many such theorems. The object of constructing a coherent theorey
of quadratic forms was the primary in the instance on research for seveveral centuries. This first setep in the
theory is to generate Theorem 62. This is accomplished in the law of quadratic reciprocity, whcih we study in
the initial chapters of the following chapters. With this tool in hand, we deelop some of the few fundamentals
concerting quadratic forms in the latter part of Chapter 3. In particular, in sections, we apply the general
theory of the sum of two squares, to give not only a proof of Theorem 65 but also some further results.

11.1 Solutions of Congruences
Let f (x) denote a polynomial with the integer coefficients

f (x) = anx
n + an+1x

n�1 + � � �+ a0:

If n is an integer such that f (u) � 0 (mod m) we say that it is a solution of the congruence f (x) � 0

(mod m). Whether or not an integer a is a solution of a congruence depends on the modulo m.
If the integer u is a solution of f (x) � 0 (mod m) and if v � u (mod m), then Theorem 47 shows that v

is also a solution. Because of this we shall say that f (x) � 0 (mod m) meaning that every integer congruent
to u (mod m) satisfies f (x) � 0 (mod m).
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Example 67
The congruence x2 � x + 4 � 0 (mod 10) has the solution x = 3 and the solution x = 8. It also has
solutions x = 13 and x = 18 and all other numbers obtained by adding and subtracting 10 as often as
we wish. In counting the number of solutions of a congruence, we can restrict our attention to complete
residue system belong to the modolus. In the example x2 � x + 4 � 0 (mod 10) because x = 3 and
x = 8 are the only numbers among 0; 1; 2; : : : ; 9 that are solutions. The two solutions can be written in
the form x = 3 or x = 8 on in congruence from x � 3 (mod 10) and x � 8 (mod 10).

Example 68
The congruence

x2 � 7x + 2 � 0 (mod 10)

has exactly 4 solutions, x = 3; 4; 8; 9. The reason for counting the number of solutions in this way is that
if f (x) � 0 (mod m) has a solution x = a, then it follows that all integers x satisfying x � a (mod m)

are automatically solutions, so this entire congruenec class is counted as a single solution.

Definition 69
Let r1; r2; : : : ; rm denote a complete system of residues (mod m) Then the number of solutions of f (x) �
0 (mod m) is the number of solutions ri such that f (r1) � 0 (mod m).

12 February 5, 2025

Example 70
x2 + 1 = 0 (mod 7) has no solutions.
x2 + 1 = 0 (mod 5) has two solutions.
x2 � 1 = 0 (mod 8) has 4 solutions.

Definition 71
Let

f (x) = anx
n + an�1x

n�1 + � � �+ a0

If an 6� 0 (mod m), then the degree of the congruence f (x) = 0 (mod m) is degree n.
If an � 0 (mod m). Then let j be the largest integer such that aj 6� 0 (mod m).
If there is no such j , so all coefficients are multiples of m, then the degree is not defined to the congruence.
It should be noted that the degree of the congruence f (x) � 0 (mod m) is not the same as the degree fo
the polynomial f (x).
The degree of the congruence depends on the modulus m and the coefficients of the polynomial f (x).
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Example 72
If

g(x) = 6x3 + 3x2 + 1

then g(x) � 0 (mod 5) has degree three but g(x) � 0 (mod 2) has degree 2 where as g(x)is of degree
3.

Theorem 73
If d j m; d > 0, and if the solution of f (x) � 0 (mod m) then it is a solution of f (x) � 0 (mod d).

Proof. This follows directly from Theorem 46, part 5

This is a distinction mode in the theorey of algebraic congruence equations that has an analogy for
congruences. A conditional equation such as x2 � 5x + 6 = 0 is true only for certain values of x , namely
x = 2 and x = 3. An identity of identical equations, such as (x �2)2 = x2�4x +4 holds for all real numbers
of complex numbers. Similarly, we say f (x) � 0 (mod m) is an identical congruence if all polynomials all
of those coefficients are divisble by all whose coefficients are divisible by f (x) � 0 (mod m) is an identical
congruence. A different type of identical congruence is also illustrated by xp � x (mod p) which is trye by
Fermat’s theorem.
So before, considering congruences of higher degree, we first descibe the solutions in the linear case.

Theorem 74
Let ab, and m > 0 be integers. Put g = (a;m)and now the congruence ax � b (mod m) has a solution
, g j b. If the condition is met, then the solution from an arithmetic property progressoin with common
differnece m=g, giving the solutions (mod m).

Proof. The question is whether there exist integers x and y such that ax +my = b. Since g divides the left
side, for such integers to exist we must have g j b. Suppose that this condition is met, and write a = g�,
b = g�, m = g. Then by the first part of Theorem 48, the desired congruence holds if and only if �x � �

(mod ). Here (�; ) = 1 by Theorem 15, so by Theorem 58 there is a unique number �� (mod ) such that
��� � 1 (mod ). On multiplying through by ��, we find that x = ��� (mod ). Thus the set of integers
x for which ax � b (mod m) is precisely the arithmetic progression of numbers of the form ��� + k. If we
allow k to take on the values 0; 1; : : : ; g � 1, we obtain g values of x that are distinct (mod m). All other
values of x are congruent (mod m) to one of these, so we have precisely g solutions.

Fact 75
Since �� can be found by application of the Euclidean algorithm, we have a method for finding all solutions
of ax � b (mod m) when g j b.
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12.1 Chinese Remainder Theorem
We now consider the important problem of solving simultaneous congruences. The simplest case of this is to
see if there is any x that satisfies the simultaneous congruences:

x � a1 (mod m1)

x � a2 (mod m2)

...
x � ar (mod mr )

This is the subject of the Chinese Remainder Theorem because it was known in China in the first century AD.

Theorem 76 (Chinese Remainder Theorem)
Let m1; m2; : : : ; mr denote r positive integers that are relatively prime in pairs. Let a1; a2; : : : ; ar denote
any r integers. If the congruence Section 12.1 holds that means that x is in the form of x = x0 + km for
some integer k . Here, m = m1m2 : : : mr .

13 February 7, 2025

Proof. Writing m = m1m2 : : : mr , we see that m
mj

is an integer and that
(

m
mj
; mi

)
= 1. Hence, by Theorem 58,

for each j there is an integer bj such that m
mj
bj � 1 (mod mj) and m

mj
bj � 0 (mod mi) if i 6= j . Put

x0 =

r∑
j=1

m

mj
bjaj :

We consider this number modulo mi and find that

x0 � ai (mod mi):

Thus x0 is a solution of the system. If x0 and x1 are two solutions of the system, then x0 � x1 (mod mi) for
i = 1; 2; : : : ; r and hence x0 � x1 (mod m). By part 3 of Theorem 48, this completes the proof.

Example 77
Find the least positive integer such that

x � 5 (mod 7)x � 7 (mod 11)x � 3 (mod 13)

Solution. We follow the proof of the theorem, taking a1 � 5 (mod 7), a2 � 7 (mod 11), and a3 � 3

(mod 13). We follow the proof, let m = 7 � 11 � 13 = 1001. Now (m1; m2; m3) = 1 and indeed by
Theorem 16, part 4, we find that,

(�2)m2m3 + (21)m1 = 1
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. So we take b1 = 2. Similarly,
4m1m3 + (�33)m2 = 1

. By the Euclidean Algorithm a third time,

(�1)m1m2 + 6m3 = 1

. So we may take b3 = 1. Then Theorem 47, we see that 11 �13 � (�2) �5+7 �13 �4 �7+7 �11 � (�1) �3 = 887.
Since the solution is unique (mod m), there is only a solution among the numbers 1; 2; : : : ; 1001. Thus 887
is the least possible solution.
In the Chinese Remainder Theorem, the hypthesis that modulo mj should be a pairwise is absolutely essential,
when this hypothesis fails, a solution x of the system is no longer guaranteed, and when such an x does exist,
we see from part 3 of Theorem 48 this is unique

m1; m2; : : : ; m3

not modulo m. In this case, there is no solution of the system, and we call the system inconsistent, The
following two examples arise when the mj are allowed to have a common factor. An extension of Theorem 76
to the case of mj is laid out in the problems 1 9 through 23 in the textbook.

Example 78
Show that there is no solution x for which x � 29 (mod 52) and x � 19 (mod 72)

Solution. Since 52 = 4 � 13, we see by part 4 of Theorem 48 that the simultaneous congruences x � 29

(mod 4), and x � 20 (mod 13) which reduces to x � 1 (mod 4), and x � 3 (mod 13).
Similarly, 72 = 8 � 9 and the second congruence is given to be x � 19 (mod 8) and x � 19 (mod 9). These
reduces to x � 3 (mod 13) and x � 1 (mod 9). By Theorem 76, we know that the constraints (mod 13)

and (mod 9) and independent of the congruences x � 1 (mod 4) and x � 3 (mod 8).
Once an inconsistency has been identified, a brief proof can be constructed. The first congruence implies that
x � 1 (mod 4) while the second congruence implies that x � 3 (mod 4). This is a contradiction, so there is
no solution.

Example 79
Determine if whether the system

x � 3 (mod 10);

x � 5 (mod 15);

x � 5 (mod 84)

has a solution and find them all if any exists.

There are two ways of solving this
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Solution (First Solution). We factor each moduli into prime factors by part 3, Theorem 48, we see that the
first congruence is equivalent to the simultaneous congruences x � 3 (mod 2), and x � 3 (mod 5). Similarly,
the system is equivalent to the two conditinos

x � 8 (mod 3)

x � 8 (mod 5)

while the third congruence is equivalent to the three congruences x � 5 (mod 4); x � 5 (mod 5); andx � 5

(mod 3) and x � 5 (mod 17). The new congruence of simultaneous is now equivalent to the new ones, but
the moduli are prime numbers. So we have,

x � 3 (mod 2)

x � 3 (mod 5)

x � 8 (mod 3)

x � 8 (mod 5)

x � 5 (mod 4)

x � 5 (mod 3)

x � 5 (mod 3)

x � 3 (mod 7)

We can consider the first 2 factors. The conditions are

x � 3 (mod 2) and x � 1 (mod 4)

These two are consistent, but the second one implies the first, so that the first one may be dropped. The The
conditions modulo 3 are x � 8 (mod 3) and x � 5 (mod 3). These are equivalent, and may be expressed as
x � 2 (mod 3). Third, the conditions modulo 5 are x � 3 (mod 5), x � 8 (mod 5). These are equivalent,
so we drop the second of them. Finally, we have the condition x � 5 (mod 7).

14 February 10, 2025
We will start using the Chinese Remainder Theorem for this part of the proof. There are multiple things that
we need to make sure that they are working want.

15 February 12, 2025
Exhibit for the following one-to-one correspondence expilictly when m1 = 7, m2 = 9, m = 63.

Solution. Consider the following matrix with 7 row and 9 columns at the intersection of ith row and jth
column we place, an entry where ci j where ci j = i (mod 7) and ci j = j (mod 9). According to Theorem 76,
we can allow the elements ci j from a complete residue system e = f1; 2; : : : ; 63g. For example, the element
40 is at the intersection of the fifth row and the fourth column because 40 � 5 (mod 7) and 40 � 4 (mod 9).
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Note that the element 41 is at the intersection of the sixth row and fifth column, since 41 � 6 (mod 7) and
41 � 5 (mod 9). Thus the element c + 1 in the matrix is just south east from the element c allowing for
periodicity when c is in the last row or column. For example 42 is in the last row so 43 turns up in in the
first row, one column later. This gives an easy way to construct the matrix. Write a 1 in the c11 position and
proceed downward and so to the right with the 2; 3; and so forth.

1 29 57 22 50 15 43 8 36

27 2 30 58 23 51 16 44 9

10 38 3 31 59 24 52 17 45

46 11 39 4 32 60 25 53 18

19 47 12 40 5 33 61 26 54

55 20 48 13 41 6 34 62 27

28 56 21 49 14 42 7 35 63

Here the correspondence between (i) and ci j provide a solution to the problem. In the matrix, the entry
ci j is entered in boldface if (ci j ; 63) = 1. We note that these entries are precisely those for which i is one of
the numbers f1; 2; : : : ; 6g, and j is one of the numbers f1; 2; 4; 5; 7; 8g. That is, (ci j ; 63) = 1 if and only if
(i ; 7) = 1 and (j; 9) = 1. Since there are exactly 6 such i , and for each such i there are precisely 6 such j , we
deduce that '(63) = 36 = '(7)'(9).

We will show such a formula holds in general and we derive that '(m) in terms of prime factorization of
m.

Theorem 80
If m1 and m2 denote two positive, relatively prime integers, then '(m1m2) = '(m1)'(m2). Moreover, if
m has the canonical factorization

m =

k∏
i=1

p�i

i ;

then

'(m) = m

k∏
i=1

(
1� 1

pi

)
:

Proof. Put m = m1m2, and suppose that (x;m) = 1. By reducing x modulo m1 we see that there is a
unique a1 2 �(m1) for which x � a1 (mod m1). Here, as before, �(m1) is the complete system of residues
�(m1) = f1; 2; : : : ; m1g. Similarly, there is a unique a2 2 �(m2) for which x � a2 (mod m2). Since
(x;m1) = 1, it follows by Theorem 50 that (a1; m1) = 1. Similarly (a2; m2) = 1. For any positive integer n,
let P(n) be the system of reduced residues formed of those numbers a 2 �(n) for which (a; n) = 1. That is,
P(n) = fa 2 �(n) : (a; n) = 1g. Thus we see that any x 2 P(m) gives rise to a pair (a1; a2) with ai 2 P(mi)

for i = 1; 2.
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We have now established the first identity of the theorem. If m =

∏
p�i

i is the canonical factorization of m,
then by repeated use of this identity we see that '(m) =

∏
'(p�i

i ). To complete the proof, it remains to
determine the value of '(p�i

i ). If a is one of the p�i

i numbers 1; 2; : : : ; p�i

i , then (a; p�i

i ) = 1 unless a is one
of the p�i�1

i numbers pi ; 2pi ; : : : ; p�i�1
i � pi . On subtracting, we deduce that the number of reduced residue

classes modulo p�i

i is p�i

i � p�i�1
i = p�i

i (1� 1
pi
). This gives the stated formula.

Let f (x) denote a polynomial with integral coefficients, and let N(m) denote the number of solutions
of the congruence f (x) � 0 (mod m) as counted in Theorem 50. We suppose that m = m1m2, where
(m1; m2) = 1. By employing the same line of reasoning as in the foregoing proof, we show that the roots
of the congruence f (x) � 0 (mod m) are in one-to-one correspondence with pairs (a1; a2) in which a1 runs
over all roots of the congruence f (x) � 0 (mod m1) and a2 runs over all roots of the congruence f (x) � 0

(mod m2). In this way we are able to relate N(m) to N(m1) and N(m2).

Theorem 81
Let f (x) be a fixed polynomial with integral coefficients, and for any positive integer m let N(m) denote
the number of solutions of the congruence f (x) � 0 (mod m). If m = m1m2 where (m1; m2) = 1, then

N(m) = N(m1)N(m2):

If m =
∏

p�i

i is the canonical factorization of m, then

N(m) =
∏

N(p�i

i ):

Proof. The first part of the theorem is an immediate consequence of Theorem 76. To prove the second part,
we note that if m = p�1

1 p�2
2 � � � p�k

k , then by repeated use of the first part, we have

N(m) = N(p�1
1 )N(p�2

2 ) � � �N(p�k

k ):

Thus it suffices to determine N(p�i

i ). If f (x) � 0 (mod p�i

i ) has a solution x = a, then f (a) � 0 (mod pi).
By Hensel’s lemma, there is a unique solution b of the congruence f (x) � 0 (mod pi) such that b � a

(mod p�i

i ). Thus if we let N(p) denote the number of solutions of the congruence f (x) � 0 (mod p), we see
that

N(pk) = pN(pk�1):

Since N(p1) = 1, it follows by induction that

N(pk) = pk :

This completes the proof.

Example 82
Let f (x) = x2 + x + 7. Find all the roots of the congruence f (x) � 0 (mod 15)
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Solution. Trying the values x = 0;�1;�2, we find that f (x) � 0 (mod 5) has no solution. Since 5 j 15, it
follows that there is no solution (mod 15).

Example 83
Let f (x) = x2 + x + 7. Find all the roots of the congruence f (x) � 0 (mod 189).

Solution. We are given that 189 = 27 � 7. By the Chinese Remainder Theorem, we need to find the common
solutions of the congruences modulo 27 and modulo 7. The roots modulo 27 are 4, 13, and 22. The roots
modulo 7 are 0 and 6. We need to solve the following systems of congruences:

The roots modulo 27 are 4, 13, and 22. The roots modulo 7 are 0 and 6.
By the Euclidean algorithm and Theorem 47, we find that x = a1 (mod 27) and x = a2 (mod 7) if and

only if x = 28a1 � 27a2 (mod 189). We let a1 take on the three values 4, 13, and 22, while a2 takes on the
values 0 and 6. Thus we obtain the six solutions:

For a1 = 4 and a2 = 0:
x = 28 � 4� 27 � 0 = 112 (mod 189)

For a1 = 4 and a2 = 6:

x = 28 � 4� 27 � 6 = 112� 162 = �50 � 139 (mod 189)

For a1 = 13 and a2 = 0:

x = 28 � 13� 27 � 0 = 364 � 175 (mod 189)

For a1 = 13 and a2 = 6:

x = 28 � 13� 27 � 6 = 364� 162 = 202 � 13 (mod 189)

For a1 = 22 and a2 = 0:

x = 28 � 22� 27 � 0 = 616 � 49 (mod 189)

For a1 = 22 and a2 = 6:

x = 28 � 22� 27 � 6 = 616� 162 = 454 � 76 (mod 189)

Therefore, the roots of f (x) � 0 (mod 189) are x � 13; 49; 76; 112; 139; 175 (mod 189).

16.1 Techniques of Numerical Calculation
In here learn how to

Example 84
Determine the value of
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Lemma 85
Suppose that 1 � k � n, and that the numbers u1; u2; : : : ; uk are independently chosen from the set
f1; 2; : : : ; ng. Then the probability that the numbers u1; u2; : : : ; uk are distinct is

n

n
� n � 1

n
� n � 2

n
� � � n � k + 1

n
=

k�1∏
i=0

(
1� i

n

)
:

Example 86
Use this method to locate a proper divisor of the number m = 36287.

16.2 Public Key Cryptography

Lemma 87
Suppose that m is a positive integer and that (a;m) = 1. If k and ~k are integers, such that k~k � 1

(mod �(m)), then ak~k � a (mod m).

17 February 17, 2025

17.1 Prime Power Moduli
The problem of solving a congruence was reduced in Section Section 12.1 to the case of a prime-power
modulus. To solve a polynomial congruence f (x) � 0 (mod pk), we start with a solution modulo p, then
move on to modulo p2, then to p3, and by iteration to pk . Suppose that x = a is a solution of f (x) � 0

(mod pj) and we want to use it to get a solution modulo pj+1.
The idea is to try to get a solution x = a+ tpj , where t is to be determined, by use of Taylor’s expansion:

f (a + tpj) = f (a) + tpj f 0(a) +
t2p2j

2!
f 00(a) + � � �+ tnpnj

n!
f (n)(a)

where n is the presumed degree of the polynomial f (x). All derivatives beyond the n-th are identically zero.
Now with respect to the modulus pj+1, equation (2.3) gives:

f (a + tpj) � f (a) + tpj f 0(a) (mod pj+1)

as the following argument shows. What we want to establish is that the coefficients of t2; t3; : : : ; tn in equation
(2.3) are divisible by pj+1 and so can be omitted in (2.4). This is almost obvious because the powers of p in
those terms are p2j ; p3j ; : : : ; pnj . But this is not quite immediate because of the denominators 2!; 3!; : : : ; n!

in these terms. The explanation is that f (k)(a) jkk! is an integer for each value of k , 2 � k � n. To see this,
let crx r be a representative term from f (x). The corresponding term in f (k)(a) is
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cr r(r � 1)(r � 2) � � � (r � k + 1)ar�k :

According to Theorem 1.21, the product of k consecutive integers is divisible by k!, and the argument is
complete. Thus, we have proved that the coefficients of t2; t3; : : : in (2.3) are divisible by pj+1.

The congruence (2.4) reveals how t should be chosen if x = a + tpj is to be a solution of f (x) � 0

(mod pj+1). We want t to be a solution of

f (a) + tpj f 0(a) � 0 (mod pj+1):

Since f (x) � 0 (mod pj) is presumed to have the solution x = a, we see that pj can be removed as a
factor to give

f (a)

p
� �tf 0(a) (mod p);

which is a linear congruence in t. This congruence may have no solution, one solution, or p solutions. If
f 0(a) 6� 0 (mod p), then this congruence has exactly one solution, and we obtain a solution x = a + tpj of
f (x) � 0 (mod pj+1).

Theorem 88 (Hensel’s Lemma)
Suppose f (x) is a polynomial with integer coefficients. If f (a) � 0 (mod pj) and f 0(a) 6� 0 (mod p),
then there is an integer t (mod p) such that f (a + tpj) � 0 (mod pj+1).

Proof. If f (a) � 0 (mod pj), f (b) � 0 (mod pk), j < k , and a � b (mod pj), then we say that b lies
above a, or a lifts to b. If f (a) � 0 (mod pj), then the root a is called nonsingular if f 0(a) 6� 0 (mod p);
otherwise it is singular. By Hensel’s lemma we see that a nonsingular root a (mod p) lifts to a unique root a2
(mod p2). Since a2 � a (mod p), it follows (by Theorem 47) that f 0(a2) � f 0(a) 6� 0 (mod p). By a second
application of Hensel’s lemma we may lift a2 to form a root a3 of f (x) modulo p3, and so on. In general we
find that a nonsingular root a modulo p lifts to a unique root aj modulo pj for j = 2; 3; : : :. Now, we see that
this sequence is generated by means of the recursion

aj+1 = aj �
f (aj)

f 0(aj)
f 0(aj)

where f 0(aj) is an integer chosen so that f 0(aj)f 0(aj) � 1 (mod p). This is entirely analogous to Newton’s
method for locating the root of a differentiable function.

Example 89
Solve x2 + x + 47 = 0 (mod 73)

Solution. First, we note that x � 1 (mod 7) and x � 5 (mod 7) are the only solutions of x2 + x + 47 � 0

(mod 7). Since f 0(x) = 2x + 1, we see that f 0(1) � 3 6� 0 (mod 7) and f 0(5) � 11 6� 0 (mod 7), so these
roots are nonsingular.
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Taking f 0(1) = 3, we see by Hensel’s Lemma that the root a = 1 (mod 7) lifts to a2 = 1� f (1)
f 0(1) �7. Since

f (1) = 49 � 0 (mod 7), we have a2 = 1. Then a3 = 1� f (1)
f 0(1) �72 = 1�49 �7 �3 = 1�1029 � 99 (mod 73).

Similarly, taking f 0(5) = 11, we see by Hensel’s Lemma that the root a = 5 (mod 7) lifts to a2 = 5� f (5)
f 0(5) �

7. Since f (5) = 77 � 0 (mod 7), we have a2 = 5. Then a3 = 5� f (5)
f 0(5) �72 = 5�77 �7 �11 = 5�5929 � 243

(mod 73).
Thus, we conclude that 99 and 243 are the desired roots, and that there are no others.

18 February 19, 2025

Example 90
Solve x2 + x + 7 (mod 81)

Solution. Starting with x2 + x + 7 (mod 3), we note that x � 1 is the only solution. Here, f 0(1) � 3 � 0

(mod 3), and f (1) � 0 (mod 9) is the only solution. Hence, we have the roots x � 1; 4; 7 (mod 9). Now
f (1) 6� 0 (mod 27), and hence there is no root x (mod 27) for which x � 1 (mod 9). As f (4) � 0

(mod 27), we obtain three roots, 4; 13; 22 (mod 27), which are � 4 (mod 9). On the other hand, f (7) 6� 0

(mod 27), so there is no root (mod 27) that is � 7 (mod 9). We are now in a position to determine which, if
any, of the roots 4; 13; 22 (mod 27) can be lifted to roots (mod 81). We find that f (4) � 27 6� 0 (mod 81),
f (13) � 189 � 27 6� 0 (mod 81), and that f (22) � 513 � 27 6� 0 (mod 81), from which we deduce that
the congruence has no solution (mod 81). In this example, we see that singular solution a (mod p) may lift
a a higher power of p, but not necessarily to arbitrarily high powers of p.

We now show that if the power of p dividing f (a) is sufficiently large compared with the power of p in f 0(a),
then the solution can be lifted without limit.

Theorem 91
Let f (x) be a polynomial with integral coefficients. Suppose that f (a) � 0 (mod pj) and that p� jj f 0(a),
and that j � 2� + 1. If b � a (mod pj�� ) then f (b) � f (a) (mod pj) and p� jj f 0(b). Moreover, there
is a unique t (mod p) such that f (a + tpj�� ) = 0 (mod pj+1).

In this situation, a collection of p� solutions (mod pj) give rise to p� solutions (mod pj+1), while the power
of p dividing f 0 dividing remains constant. Since the hypotheses of the theorem apply with a replced by
a + t j�� and (mod pj) but with � unchanged, the lifting may be repeated and continues indefinitely

Proof. By Taylor’s expansion in Section 17.1, we see that

f (b) = f (a + ipj�� ) � f (a) + ipj�� f 0(a) (mod p2j�2� ):

Here, the modulus is divisible by pj+1, since 2j � 2� = j + (j � 2�) � j + 1. Hence,

f (a + tpj�� ) � f (a) + tpj�� f 0(a) (mod pj+1):
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Since, both terms, on the R.H.S are divisibly by pj , the LHS is also. Moreover, on dividing through pj we find
that,

f (a + tpj�� )

pj
� f (a)pj

+
t
f 0(a)

p�
(mod p)

and the coefficient of t is relatively prime to p, so that there is a unique t (mod p) for which the right side
is divisible by p. This completes final assertion of the theorem. To complete the proof, we note that f 0(x) is
a unique polynmial with integral coefficients, so that

f 0(a + tpj�� ) � f 0(a) (mod pj�� ):

for any integer t. But j � � � � + 1, so this congruence holds, (mod p�+1). Since p� exactly divides f 0(a)
(in symbols, p� jj f 0(a)), we conclude that p� jj f 0(a+ tpj�� ). This completes the proof of the theorem.

19 February 21, 2025

Example 92
Discuss the solutions of x2 + x + 223 = 0 (mod 34j).

Solution. Since 223 � 7 (mod 27), the solutions (mod 27) are the same in example Example 92. For this
polynomial, we find that f (4) � 0 (mod 81) are the same as in example Example 90. For this new polynomial,
we find taht f (4) � 0 (mod 81), and thus we have three solutions 4; 31; 58 (mod 81). Similarly, f (13) � 0

(mod 81), giving three solutions 13; 40; 67 (mod 81). Moreover, f (22) � 0 (mod 81), yielding the solutoins
22; 49; 76 (mod 81). In fact, we note that f (4) � 0 (mod 35) and so 34 jj f (4). So by theorem, Theorem 81,
we have the solution 4 (mod 243) is one of nine solutions of the form 4 + 27t (mod 243). We may further
verify that there is precisely one value of t (mod 3), namely t = 2, for which f (4 + 27t) = 0 (mod 36).

That is since, we have q solutions (mod 36), one of those solutions must be 22 + 81t. On the other
hand, as f 0(13) � 0 (mod 27) so we have solutions for 13 + 27t . As 34 jj f (13), we find that none of the
three solutions 13+27t (mod 81) lifts to a solution (mod 243). In conclusion, we have found that for each
j � 5 there are precisely 18 solutions (mod 3j), of which 12 do not lift to 3j+1, while each of the remaining
six lifts to three solutions (mod 3j+1).

729 729

243

81

27

9

3
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Suppose that f (a) � 0 (mod p), and that f 0(a) � 0 (mod p). We wish to know whether a can be lifted
to solutions modulo arbitrarily high powers of p. The situation is resolved if we can reach a point at which
Theorem 91 applies, that is, j � 2� + 1. However, there is nothing in our discussion thus far to preclude the
possibility that the power of p in f 0 might steadily increase with that in f , so that Theorem 91 might never
take effect.

19.1 Prime Modulus
We have reduced the problem of solving

f (x) � 0 (mod m)

to the last state of the solving congruences with prime moduli. Although we have no general method for
solving such congruences, there are some interesting facts concerning the solutions. A natural question about
polynomial congruences, of the type f (x) � 0 (mod m) is whether there is any analogous well-known theorem
in algebra that a polynomial equation of degree n whose coefficients are complex numbers has exactly n roots
or solutions, allowing for multiple roots. For congruences, the situation is more complicated. In the first place
for any number m > 1 there are polynomials congruences having no solutions. As an example is written by
the following

xp � x + 10 (mod m)

. There is no solution, because
xp � x + 1 � 0 (mod m)

has none, by Fermat’s Theorem, moreover, we have already more solutions than its degree for example
x2 � 7x + 2 � 0 (mod m) has four solutions: x = 3; 4; 8; 9. Also, x2 + x + 7 � 0 (mod 27) with three
solutions: x = 4; 13; 22. But if the solution is prime a congruence cannot have more solutions than it’s
degrees. This is proved in Theorem 93, later in the solution. It is important here to carefully the consider the
meaning of the “degree of the polynomial”. This is in Definition 71. Such a polynomial is 5x3 + x2 � x has
degree three, but the congruence 5x3 + x2 = x � 0 (mod 5) has degree 2. Consider the congruence

5x2 + 10x + 15 � 0 (mod 5)

having solutions x = 0; 1; 2; 3, and at first glance this might appear in Theorem 93. However, by Definition 71,
this congruence is assigned no degree, so that Theorem 93 does not apply.

20 February 24, 2025

Theorem 93
The congruence f (x) � 0 (mod p) of degree of n has at most n solutions.
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Corollary 94
If bn + bn�1x

n�1 + � � �+ b0 � 0 (mod p) has more than n solutions, then all coefficients bj are divisible
by p.

Proof. The reason this is that if some of the coefficients is not divisible by p, then the polynomial has a degree,
and that degree is at most n. Therefore, Theorem 93 implies that the congruence has at most n solutions and
that is a contradiction.

Theorem 95
If F (x) is a function that maps residue classes (mod p) to residue classes (mod p), then there is a
polynomial f (x) with integral coefficients and degree at most p � 1 such that F (x) � f (x) (mod p) for
all residue classes x (mod p)

Proof. By Fermat’s congruence, we see that

1� (x � a)p�1 �
1 (mod p) if x � a (mod p)

0 (mod p) otherwise

Hence the polynomial,

f (x) =

p∑
i=1

F (i)(1� (x � i)p�1

has desired properties.

Theorem 96
The congruence

f (x) � 0 (mod p)

of degreen, with leading coefficients an = 1 has n solutions iff f (x) is a factor of xp � x (mod p), that is
iff

xp � x = f (x)q(x) + ps(x)

where q(x) and s(x) have integral coefficients, q(x) has degree n�p and leading coefficinet 1, and where
either s(x) is a polynomial of degree less than n or s(x) is zero.

Proof. First assume that
f (x) � 0 (mod p)

has n solutions. Then n � p by Definition 69 which says (Let r1; r2; : : : ; rm denote a complete system of
residues (mod m) Then the number of solutions of

f (x) � 0 (mod m)
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is the number of solutions ri such that f (r1) � 0 (mod m).) Dividing xp� x by f (x), we get a quotient q(x)
and a remainder r(x) satisfying

xp � x = f (x)q(x) + r(x)

where r(x) is either 0 or else a polynomial of degree < n.

This equation implies by an application of Fermat’s Theorem to xp � x that every solution of f (x) � 0

(mod p) is a solution of r(x) � 0 (mod p). Thus r(x) � 0 (mod p). Then r(x) � 0 (mod p) has at least
n solutions, and by Corollary 94 it follows that every coefficient is at last divisible by p1 so r(x) = ps(x) as
in the theorem. Conversely, assume that

xp � x = f (x)q(x) + ps(x)

as in the statement of the theorem. The congruence

f (x)q(x) � 0 (mod p)

has p solutions. This congruence has least theorem xp. The leading term coefficient of f (x) is xn by hypothesis
and hence the leading term q(x) is xp � x . By Theorem 93 the congruence f (x) � 0 (mod p) and q(x) � 0

(mod p) has at most n solutions and p � n solutions respectively.
By every one of the p solutions of f (x)q(x) � 0 (mod p) is a solution of at least one congruence

f (x) � 0 (mod p) and q(x) � 0 (mod p). It follows that the two congruences have exactly n solutions and
p � n solutions, respectively. The restriction an = 1 in this theorem is needed so that we may divide xp � x

by f (x) and obtain a polynomial q(x) with integral coefficients. However, it is not much of restriction. We
can always find an integer �an such that an �an = 1

as an example, we see that
x5 � 5x3 + 4x � 0 (mod 5)

has 5 solutions, and
x5 � x = (x5 � 5x + 4x) + (5x3 � 5x)

as second examples, we

Corollary 97
If d j (p � 1), then xd � 1 (mod m) has d solutions.

22 February 28, 2025
Proof. Choose e so that de = p � 1. Since (y � 1)(1 + y + � � �+ y e�1) = y e � 1, on taking y = xd , we see
that

x(xd � 1)(1 + xd + � � �+ xd(e�1)) = xp � x:

A further application of Theorem 99 arises considering a polynomial

f (x) = (x � 1)(x � 2) : : : (x � p + 1):
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For convenience, let p > 2, and expanding we find that

xp�1 + �1x
p�2 + �2x

p�3 + � � � :

where �j is the sum of all products of j distinct members of the set f1; 2; : : : ; p � 1g. In the two extreme
cases we have �1 = 1+2+ � � �+(p� 1) =

p(p�1)
2 , and �p�1 = 1 � 2 � � � � � (p� 1) = (p� 1)!. The polynomial

f (x) has degree p � 1 and has the p � 1 roots 1; 2; : : : ; p � 1 (mod p). Consequently, the polynomial xf (x)
has degree p and has p roots. By applying Theorem 99 to this latter polynomial, we see that there are
polynomials q(x) and s(x) such that xp � x = xf (x)q(x) + ps(x). Since q(x) has degree p � p = 0 and
leading coefficient 1, we see that q(x) = 1. That is, xp � x = xf (x) + ps(x), which is to say that the
coefficients of xp � x are congruent (mod p) to those of xf (x). On comparing the coefficients of x , we
deduce that �p�1 = (p � 1)! � �1 (mod p), which provides a second proof of Wilson’s congruence. On
comparing the remaining coefficients, we deduce that

�j � 0 (mod p) for 1 � j � p � 2

. If p � 5

Theorem 98

Theorem 99

22.1 Primitive Roots and Power Residues

Definition 100
Let m denote a positive integer, and and any integer a such that (a;m) = 1. Let m be the smallest
positive integer such that

an � 1 (mod m)

We say that the order of a (mod m) in h is such that the exponent of h is modulo m.

The terminology ”a belongs to the exponent h” is a classical language of numbers. The language is
replaced more and more in the current literature by ”the order of a is h” as a usage that is standard in group
theory. We shall explore the ideas of number theory and those of group theory. We explore the idea of number
theory and those of group theory.

Suppose that a has order h (mod m). If k is a positive multiple of h, say k = qh, then

ak = aqh = (ah)q = 1q = 1 (mod m):
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Conversely, if k is a positive integer such that ak = 1 (mod m), then we apply the division algorithm to obtain
integers q and r such that

k = qh + r; q � 0; and 0 � r < h:

Thus,
1 = ak = aqh+r = (ah)qar = 1qar = ar (mod m):

But 0 � r < h and h is the least positive power of a that is congruent to 1 modulo m, so it follows that
r = 0. Thus h divides k , and we have proved the following lemma.

Lemma 101
If a has order h modulo m, then the positive integer k satisfies ak � 1 (mod m) if and only if h j k .

Corollary 102
If a has order h modulo m, and if ak � aj (mod m), then k � j (mod h).

Proof. Since ak � aj (mod m), we have ak�j � 1 (mod m) or aj�k � 1 (mod m), depending on whether
k � j or k < j . By Lemma 101, h j (k � j) or h j (j � k), which means k � j (mod h).

23 March 3, 2025
Proof. Each reduced residue class a m

Lemma 103
If a has order h modulo m, then ak has order h=(h; k) modulo m.

Since h=(h; k) = 1 if and only if h j k Lemma 103 contains Lemma 101 as a special case.

Proof. According to Lemma 101, (ak)j � 1 (mod m)

Lemma 104
If a has order h (mod m) and b has order k (mod m), and if gcd(h; k) = 1, then ab has order hk

(mod m).

Proof.

Definition 105
If g belongs to the exponent �(m) modulo m, then g is called a primitive root modulo m.

In algebraic language, this definition can be stated. If the order of g modulo m in is '(m), then the mul-
tiplicative group of reduced residues modulo m is a cyclic group generated by the element g. In terms of
Lemma 101, the number of a is the solution of the congruence
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Theorem 106
Ifp is a prime then there exist �(p � 1) primitive roots modulo p.

Proof. Just write the proof for now and then we can figure out the other things later in the course

24 March 5, 2025

25 March 7, 2025

Theorem 107
If p is a prime then there exist

'('(p2)) = (p � 1)'(p � 1)

primitive roots modulo p2.

Proof. We begin by noting that if g is a primitive root modulo p, then g has order p� 1 modulo p. We need
to show that there exist '('(p2)) = (p � 1)'(p � 1) primitive roots modulo p2.

First, we observe that if g is a primitive root modulo p, then g has order p � 1 modulo p. This means
that gp�1 � 1 (mod p) and for any 1 � k < p � 1, gk 6� 1 (mod p).

Next, we consider the order of g modulo p2. We need to show that there exist integers g such that the
order of g modulo p2 is (p � 1)p. This means that g(p�1)p � 1 (mod p2) and for any 1 � k < (p � 1)p,
gk 6� 1 (mod p2).

To do this, we use Hensel’s Lemma ( Theorem 88). Let g be a primitive root modulo p. Then gp�1 � 1

(mod p). By Hensel’s Lemma, there exists an integer h such that h � g (mod p) and hp�1 � 1 (mod p2).
This h is a lift of g to modulo p2.

Now, we need to show that h has order (p � 1)p modulo p2. Suppose hk � 1 (mod p2) for some k .
Then hk � 1 (mod p), which implies that p � 1 divides k . Let k = (p � 1)m. Then h(p�1)m � 1 (mod p2).
Since hp�1 � 1 (mod p2), we have h(p�1)m � 1 (mod p2). This implies that m must be a multiple of p, say
m = pn. Therefore, k = (p � 1)pn = (p � 1)p, which means that the order of h modulo p2 is (p � 1)p.

Finally, we need to count the number of such primitive roots modulo p2. By Lemma Lemma 103, since
there are '(p � 1) primitive roots modulo p, and each of these can be lifted to p different primitive roots
modulo p2, there are (p � 1)'(p � 1) primitive roots modulo p2.

Thus, we have shown that there exist (p � 1)'(p � 1) primitive roots modulo p2.

To show that there are no other primitive roots (mod p2), it signifies to argue as in the preceeding proof.
Let g denote a primitive p2, so that the members g; g2; : : : ; gp(p�1) form a reduced residues (mod p2). By
Lemma 103, we have that gk is a primitive root if and only if k; p(p � 1) = 1. By definitino of Euler’s
'�function, there are precisely '(p(p�1)) such values of k among the numbers, 1; 2; 3; : : : ; p(p�1). Since
p; p � 1 = 1, we deduce from Theorem 80, If m1, and m2, are two possible numbers, then '(m1; m2) such
that '(p(p � 1)) = '(p)'(p � 1) = (p � 1)'(p � 1).
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Theorem 108
If p is an odd prime, and g is a primitive root (mod p2), then g is a primitive root (mod 2p�) for
� = 3; 4; : : :.

Proof. Suppose that g is a primitive root of (mod p2) and that h is the order of g (mod p�) where � > 2.
From the congruence,

gh � 1 (mod p�)

, we deduce that gh � 1 (mod p2) and hence that '(p2) j h, by Corollary 102, we also have that h j '(p�).
Thus

h = p�(p � 1)

for some � = 1; 2; : : : ; � � 1. To prove that � itself proves that we have the following:

gp
��2(p�1) 6� 1 (mod p�)

. We use induction to show that this holds for all � > 2. By hypothesis, the order of g (mod p2) is
'(p2) = p(p � 1). Hence gp(p�1) � 1 (mod p2). By Fermat’s congruence, we have the following:

gp�1 � 1 (mod p)

. So we can write gp�1 = 1 + kp for some integer k . Now consider gp(p�1):

gp(p�1) = (1 + kp)p � 1 + pkp (mod p3) � 1 + p2k (mod p3):

Since g is a primitive root modulo p2, gp(p�1) 6� 1 (mod p3). Therefore, gp(p�1) � 1 + p2k (mod p3)

and 1 + p2k 6� 1 (mod p3), which implies k 6� 0 (mod p). Thus, gp(p�1) 6� 1 (mod p3).
By induction, assume that gp��2(p�1) 6� 1 (mod p�) for some � � 3. Then consider gp��1(p�1):

gp
��1(p�1) = (gp

��2(p�1))p 6� 1p (mod p�+1):

Therefore, gp��1(p�1) 6� 1 (mod p�+1), completing the induction.
Hence, g is a primitive root modulo p� for all � � 3.

26 March 17, 2025

Definition 109
If g belongs to the exponent '(m) modulo m, then g is called a primitive root modulo m.

Theorem 110
If p is a prime, then there exist '('(p2)) = (p � 1)'(p � 1) primitive roots modulo p2.

41



Theorem 111
If p is an odd prime, and g is a primitive root (mod p2), then g is a primitive root (mod 2p�) for
� = 3; 4; : : :.

The prime p = 2 must be excluded, for g = 3 is a primitive root (mod 4) but not (mod 8). Indeed, it
is easy to verify that

a2 � 1 (mod 8)

for any odd number a. As '(8) = 4, it follows that there is no primitive root (mod 8). Suppose that a is
odd. Since

8 j (a2 � 1) and 2 j (a2 + 1)

It follows that
16 j (a2 + 1)(a2 � 1) = a4 � 1

That is
a2 � 1 (mod 16)

If we repeat this argument, we see that
a8 � 1 (mod 32)

and in general that
a2

��2 � 1 (mod 2�)

for � � 3. Since '(2�) = 2��1, we conclude that if � � 3, then

a'(2
�) � 1 (mod 2�)

for all odd a, and hence there is no primitive root (mod 2�) for � � 3. Suppose p is an odd prime and that
g is a primitive root (mod p�). We may suppose that g is odd, for if g is even, we have only to replace

g + p�

which is odd. The numbers g; g2; : : : ; g'(p�) form a reduced residue system (mod p�). Since, these numbers
are odd, they also form a reduced residue system (mod 2�). The g is a primitive root (mod 2p�). We have
established that a primitive root exists modulo m when m = 1; 2; 4; p�; or 2p� (p an odd prime prime) but
there no primitive root (mod 2�) for � � 3. Suppose now that m is not a prime power or twiece a prime
power it can be expressed as a product as following:

m = m1m2

with (m1; m2) = 1, where m1 > 2 and m2 > 2. Let

e = lcm('(m1); '(m2))
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If (a;m) = 1 then we have (a1; m1) = 1 so that �'(m1) = 1 (mod m1), and hence we have

ae � 1 (mod m1)

Similarly, we have ae � 1 (mod m2) and hence ae � 1 (mod m). Since 2 j '(n) for all n > 2, we see that
2 j ('(m1); '(m2)), so that

e =
'(m1)'(m2)

('(m1); '(m2))
< '(m1)'(m2) = '(m)

Thus there is no primitive root m in this case. We now have determined which m possess primitive roots.

Theorem 112
There exists a primitive root modulo m if and only if m = 1; 2; 4; : : : ; p� or 2p�

Theorem 98 and its proof generalizes to any modulo is m possessing a primitive root.

Corollary 113
Suppose that m = 1; 2; 4; p� or 2p� where p is an odd prime. If (a;m) = 1 the congruence

xn � a (mod m)

has n; '(m) solutions or no solutions according as

a'(m)=(n;'(m)) � 1 (mod m)

or not. For general composite m possessing no primitive roots, we factor m and apply the above to the
prime powers dividing m.

Example 114
Determine the number of solutions of the congruence

x4 � 61 (mod 117)

Solution. We note that 116 = 32 � 13. As '(9) = 6 and gcd(4; '(9)) = 2, we have:

'(9)

gcd(4; '(9))
=

6

2
= 3:

Since 613 � (�2)3 � �8 � 1 (mod 9), we deduce that the congruence x4 � 61 (mod 9) has 3 solutions.
Next, consider the congruence x4 � 61 (mod 13). Since '(13) = 12, and 61 � 1 (mod 13), this

congruence also has gcd(4; 12) = 4 solutions.
Thus, by Theorem 81, the number of solutions modulo 117 is 3 � 4 = 12.
This method fails when the modulus is divisible by 8, as Corollary 113 does not apply to higher powers of

2. To establish an analogue of Corollary 113 for higher powers of 2, we first show that nearly a primitive root
modulo 2� exists.
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Theorem 115
Suppose that � � 3. The order of 5 (mod 2�) is 2��2. The numbers �5;�52;�53; : : : ;�5��2 include
a primitive root. Therefore, there exist integers i and j such that:

a � (�1)i5j (mod 2�):

The values of i and j are determined by the specific congruence conditions.

27 March 21, 2025

27.1 Number Theory from an algebraic viewpoint
We began with a binary operation denoted by � and we presume this binary operation is simply valued. So
a � b has a unique value

Definition 116
A group G is a set of elements, a; b; c; : : : for all element a; b; c 2 G wit a binary operation � such that:

� The set is closed under the operation

� The associative law holds a � (b � c) = (a � b)� c) for all element a; b; c 2 G

� The set has a variance identity element e/

� Each element has a unique inverse in G.

Note 117. Here are some notes about the types of groups:
� A group is valled abelian or commutative if a � b = b � a for every pair of element a; b in G.

� A finite group is one with a finite number of elements, otherwise it is a finite group.

� If a group is finite, the number of its elements is called the order of the group.

Example 118
The set of all integers (written addivitely) in a group under addition

We get the ‘additive group named ’

Definition 119 (Isomorphic Group)
Two groups G with the operations � and G` with operation � are said to be isomorphic if there is a
one-to-one corespondence between the elemtns of G and those of G`, such that if a 2 G corresponds to
a a` 2 G` and b 2 G corresponds to b` 2 G` then a � b in G corresponds to a` � b` in G`. In symbols,
G �= G`.
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Another way of thinking this of the additive gorup (mod 6) is in terms of the so-called residue classes.

C0 = : : : ;�18;�12;�6; 0; 6; 12; 18; : : :

C1 = : : : ;�18;�12;�6; 0; 6; 12; 18; : : :

C0 = : : : ;�18;�12;�6; 0; 6; 12; 18; : : :

C0 = : : : ;�18;�12;�6; 0; 6; 12; 18; : : :

C0 = : : : ;�18;�12;�6; 0; 6; 12; 18; : : :

Theorem 120
Any complete residue system modulo m has a gorup under addition modulo m, This completes the residues
modulo m consists isomorphic groups under addition, which we speak of the ‘the’ additive group modulo
m.

Proof. Let’s begin with the complete residude system 0; 1; 2; 3; : : : ; m � 1 modulo m. This system is closed
under addition modulo m, and the corresponding associative property of addition is inherited from the corre-
spoding properties, for all integers

a + (b + c) = (a + b) + c

implies that a + (b + c) = (a + b) + c (mod m). Finally, the identity is 0 and it implies and the additive
inverse of any element a is m � a. The inverses are unique.

Passing from the system, we have 0; 1; : : : ; m � 1 to any complete residue system ra; rb; rc ; : : : ; r[m � 1].
We observe that the operation of addition modulo m is preserved. For example, if ra corresponds to a and rb

corresponds to b, then the sum of the two residues is

ra + rb = ra+b

where a+b is taken modulo m. The identity element is r0 and the inverse of ra is rm�a. Thus, we have shown
that any complete residue system modulo m has a group under addition modulo m.

28 March 31, 2025
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Theorem 121 (Lemma of Gauss)
For any odd prime, let (a; p) = 1. Consider the integers

a; 2a; 3a; : : : ;

(
p � 1

2

)
a

and their least positive residues modulo p. If n denotes the number of these residues that don’t exceed
p
2 , then

a

p
= (�1)n

Proof. Let
r1; r2; r3; : : : ; rn

denote the residues that exceed p
2 , and let

s1; s2; : : : ; sk

denote the remaining residues. The ri and si are all distinct and none is zero. Furthermore, n + k =
(p�1)

2 .
Now we have 0 < p � ri <

p
2 where i = 1; 2; 3; : : : ; n and then numbers p � ri are distinct. Also note that

p� ri is an sj for if p� ri = sj then ri = pa (mod p) and rj = p� for some 1 � p <
(p�1)

2 for if 1 � � � (p�1)
2

and p� pa � �a (mod p), since, (a; p) = 1 this implies that a(p+ �) � 0 and (p+ �) � 0 (mod p), which
is impossible because p; � < p

2 . Thus, p � r1; p � r2 : : : ; p � rn and s1; s2; : : : ; sk are all distinct, and are all
at least 1 and less than p

2 , and they are n + k = p�1
2 is a number, that is, they are just the integers

1; 2; : : : ;
p � 1

2

in some order. Multiply them together and we have

Definition 122
For real part x , the symbol [x ] denotes the greatest integer less than or equal to x . This is also called the
integral part of x , and x � [x ] is the fractional part of x .

Such an integer as [100023 ] is the quotient where 1000 is divided by 23 and is also the number of positive
multiples of 23 less than 1000. On the other hand, its value 43, is immediately obtained by dividing 1000 by
23 and taking the integral part of the answer only. Here are further examples

15

2
= 7;

�15
2

= �8; [�15] = �15

Theorem 123
If p is n odd prime
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Proof. We use the same notation as in the proof of Theorem 121. Here ri and si are the least positive
remainders of taruned by dividing ja by p; j = 1; 2; : : : ;

(p�1)
2 . The quotient of the divison is easily seen to be

and hence by subtraction we have

29 April 2, 2025

30 April 4, 2025

30.1 The Jacobi Symbol

Definition 124
Let Q be a positive odd integer, so that Q = q1q2 : : : qs , where the qi are odd primes, not necessarily
distinct. Then the Jacobi symbol P

Q is defined as:

P

Q
=

P

q1
� P
q2
� : : : � P

qs
;

where P
qi

is the Legendre symbol for each prime qi . The Jacobi symbol generalizes the Legendre symbol
to composite denominators.

If Q is an odd prime, the Jacobi symbol and the legendre symbol are insdistinguishable. However, this can
be cause no explanation since there values are the same. If (P;Q) > 1, then P

Q = 0 whereas if (P;Q) = 1

then (PQ) = �1. Moreover, if P is a quadratic residue modulo and odd prime number Q, then qi is dividing
R, so that
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