
Math 4580: Abstract Algebra I

Lecturer: Professor Michael Lipnowski
Notes by: Farhan Sadeek

Spring 2025

We didn’t have any lecture on the first day, but Dr. Lipnowski did post a module on carmen about the
syllabus and the course. This semester we will be covering the first few chapters of the book Abstract Algebra:
Theory and Applications by Thomas Judson.

Definition 1
Set: A collection of distinct objects, considered as an object in its own right.
Axioms: A collection of objects S with assumed structural rules is defined by axioms.
Statement: In logic or mathematics, an assertion that is either true or false.
Hypothesis and Conclusion: In the statement “If P, then Q”, P is the hypothesis and Q is the conclusion.
Mathematical Proof: A logical argument that verifies the truth of a statement.
Proposition: A statement that can be proven true.
Theorem: A proposition of significant importance.
Lemma: A supporting proposition used to prove a theorem or another proposition.
Corollary: A proposition that follows directly from a theorem or proposition with minimal additional proof.

1 January 8, 2025
Professor Lipnowski discussed Sam Lloyd’s 15 puzzle. Each lecture will include a mystery digit, contributing
up to 5% bonus to the final grade based on correct guesses.

Certain course expectations:
� All assignments (one every two weeks) and exams (one midterm and one final exam) will be take-home.

� All the problems from the course textbook.

� Collaboration is encouraged, but the work should be your own.

� For the exams, we are not supposed to talk to other friends.

1.1 Functions
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Definition 2
Let A and B be sets. A function f : A! B assigns exactly one output f (a) 2 B to every input a 2 A.

� The set A is called the domain of f .

� The set B is called the codomain of f .

Fact 3
The domain A, codomain B, and the assignment of outputs f (a) to every input a 2 A are all part of the
data defining a function. Just writing a formula like f (x) = ex does not determine a function, as the
domain and codomain are not specified.

For example:
� f : R! R; f (x) = ex .

� f : Q! Q; f (x) = ex .

Although these functions use the same formula, their meanings are completely different because their domains
and codomains differ.

1.2 Graphs
A function f : A! B is often identified with its graph in A� B:

graph(f ) = f(a; b) 2 A� B : b = f (a)g:

Lemma 4
Let f : A ! B be a function. Its graph, graph(f ), passes the vertical line test: For every a 2 A,
Va := f(a; b) 2 A� B : b 2 Bg intersects graph(f ) in exactly one element.

x

y

Vertical line test

Proposition 5
Let G � A� B be any subset passing the vertical line test, i.e., for all a 2 A, Va \ G consists of exactly
one element. Then G = graph(f ) for a unique function f : A! B.
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Proof. If G = f(a; b) j b 2 Bg satisfies the vertical line test, define f : A ! B by f (a) = b. Then
G = graph(f ).

Definition 6
A subset R � A � B is called a relation. The vertical line test distinguishes graphs of functions from
more general relations.

1.3 Examples
� Let S = f(x; y) 2 R2 : x2+ y2 = 1g (the unit circle). This is a relation but not the graph of a function

because it fails the vertical line test: The vertical line x = 0 intersects the circle at two points.

� Visual depiction of a unit circle:

x

y x2 + y2 = 1

� Let A = f1; 2; 3g, B = f4; 5g. The number of functions from A to B is 23 = 8, corresponding to the 8

associated graphs in A� B.

� The number of relations from A to B is 2jaj�jbj = 23�2 = 64, containing the 8 graphs of functions from
A to B.

Fact 7
The notion of relation is much more permissive than the notion of functions.

1.4 Visualizing Functions as Directed Edges
A function f : A! B can be visualized as a collection of directed edges (a; f (a)) 2 A� B. Each element of
A has exactly one outgoing edge in the graph.
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2 January 10, 2025

2.1 Injection and Surjection
Let f : A! B be a function.

Definition 8 (Injectivity (One-to-One))
f is injective (one-to-one) if:

8x; y 2 A; f (x) = f (y) =) x = y

Equivalently:
x 6= y =) f (x) 6= f (y)

Fact 9
Distinct inputs have distinct outputs.

Definition 10 (Surjectivity (Onto))
f is surjective (onto) if:

8b 2 B; 9a 2 A such that f (a) = b:

Fact 11
Every b 2 B is an output of something through f .”
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Example 12
Here are a few examples of injectivity and surjectivity:

� Let A = f1; 2; 3g and B = f4; 5g and f : A! B with f (1); f (2); f (3) as elements of B. If B has
only two elements, at least two of f (1); f (2); f (3) must coincide (e.g., f (1) = f (2)). Thus, f is
not injective.

� Let A = f1; 2; 3g and B = f4; 5; 6; 7g and f : A! B where:

f (1) = 4; f (2) = 7; f (3) = 5:

Distinct inputs have distinct outputs, so f is injective.

� Let A = f1; 2; 3g and B = f4; 5; 6; 7g and f : A! B where:

f (1) = 4; f (2) = 4; f (3) = 6:

Here, A = f1; 2; 3g and B = f4; 5; 6; 7g and f (1) = f (2) but 1 6= 2, so f is not injective.

� Let f : A ! B where B has size 4 and f (1); f (2); f (3) are distinct elements of B. If B n
ff (1); f (2); f (3)g is non-empty, then b 6= f (a) for all a 2 A, implying f is non surjective.

� Let A = f1; 2; 3g and B = f4; 5g and f : A! B with f (1) = 4; f (2) = 5; f (3) = 4. f is surjective.

� Let A = f1; 2; 3g and B = f4; 5g and f : A ! B with f (1) = 4; f (2) = 4; f (3) = 4. f is not
surjective.

2.2 Bijection and Range

Definition 13 (Bijectivity)
f is bijective if f is both injective and surjective.

Definition 14
Let f : A! B be a function. The range of f is the subset of B defined as:

range(f ) := fb 2 B j b = f (a) for some a 2 Ag:

Thus, f : A! B is surjective () range(f ) = B.

� Let A = f1; 2; 3g and B = f4; 5; 6g and f : A! B where:

f (1) = 6; f (2) = 5; f (3) = 4:

f is a bijection.
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� Let A = f1; 2; 3g and B = f4; 5; 6; 7g and f : A! B where:

f (1) = 4; f (2) = 4; f (3) = 56

f is neither injective nor surjective.

Question. Let A and B be finite sets of the same size. Prove that the following are equivalent:

1. f : A! B is injective.

2. f : A! B is bijective.

3. f : A! B is surjective.

Demonstrate that (1), (2), and (3) are not necessarily equivalent if A = B = N.

Example 15
Let f : N! Z be defined as:

f (n) =

n=2 if n is even;
� (n+1)

2 if n is odd:

is a bijection from N to Z.

Proof. We will prove injectivity first. Suppose f (n1) = f (n2). Then: If f (n1) = f (n2) > 0, then n1 and n2

must be even, and
n1

2
= f (n1) = f (n2) =

n2

2
=) n1 = n2:

If f (n1) = f (n2) < 0, then n1 and n2 must be odd, and

�n1 + 1

2
= f (n1) = f (n2) = �n2 + 1

2
=) n1 = n2:

In all cases, n1 = n2. It follows that f is injective.
Now let’s prove surjectivity. Let n 2 Z. If n > 0, then

n = f (2n):

If n < 0, then
n = f (�2n � 1):

Therefore, f is surjective.

Theorem 16 (Taylor’s Theorem)
Let f be a function that is n-times differentiable at a. Then for each x in the interval containing a, there
exists a � between a and x such that

f (x) = f (a) + f 0(a)(x � a) +
f 00(a)
2!

(x � a)2 + � � �+ f (n)(a)

n!
(x � a)n +

f (n+1)(�)

(n + 1)!
(x � a)n+1:
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Proof. By the mean value theorem, for each x in the interval containing a, there exists a � between a and x

such that

f (x) = f (a) + f 0(a)(x � a) +
f 00(a)
2!

(x � a)2 + � � �+ f (n)(a)

n!
(x � a)n + Rn+1(x);

where Rn+1(x) is the remainder term. The remainder term can be expressed as

Rn+1(x) =
f (n+1)(�)

(n + 1)!
(x � a)n+1:

Therefore, we have

f (x) = f (a) + f 0(a)(x � a) +
f 00(a)
2!

(x � a)2 + � � �+ f (n)(a)

n!
(x � a)n +

f (n+1)(�)

(n + 1)!
(x � a)n+1:

3 January 13, 2025
Let n: Let f : A! B, g : B ! C be functions.

Their composition g � f is defined as:

(g � f )(a) := g(f (a)) for all a 2 A:

3.1 Picture:

A
f�! B

g�! C

g�f��!

3.2 Examples of Composition
1. f : R! R3, g : R! RC

x 7! x3; x 7! ex :

g � f : A �! C

(g � f )(n) := g(f (n))

= g(x3)

= ex
3

3.3 Example 2
f : A! B
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1 7! 6; 2 7! 4; 3 7! 4

g : B ! C

4 7! 9; 5 7! 8; 6 7! 7

In Families
g � f : A! C

(g � f )(1) := g(f (1)) = g(6) = 7

(g � f )(2) := g(f (2)) = g(4) = 9

(g � f )(3) := g(f (3)) = g(4) = 9

3.4 In Pictures: ”Follow the Arrow!”

Associativity of Function Composition
Let f : A! B, g : B ! C, h : C ! D be functions. Then:

h � (g � f ) = (h � g) � f :
For all a 2 A:

LHS(a) = (h � (g � f ))(a) = h(g(f (a)))

RHS(a) = ((h � g) � f )(a) = h(g(f (a)))

Proposition
Let f : A ! B be a function. f is a bijection (i.e., f is 1-1 and onto) if and only if there exists a function
g : B ! A satisfying:

g � f = idA

f � g = idB

3.5 Rule:
The function g is said to be the inverse of f (and f is the inverse of g).

If g exists, it must be unique:
Suppose h : B ! A also satisfies:
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h � f = idA

f � h = idB

Then g = h.

Proof of Proposition
(b) Suppose f : A! B is 1-1 and onto.

Claim: For every b 2 B, there is a unique element gb 2 A for which f (gb) = b.
Proof: Since f is onto, there is some gb for which f (gb) = b. If � also satisfies f (�) = b, then:

f (�) = b = f (gb)) � = gb; since f is 1-1.

Thus, gb exists and is unique.
Define g : B ! A by:

b 7! gb:

For all b 2 B:

(f � g)(b) := f (g(b)) = f (gb) = b by construction of gb:

) f � g = idB:

For all a 2 A:

(g � f )(a) := g(f (a)) = gf (a):

By construction of g:

f (gf (a)) = f (a):

On the other hand:

f (a) = f (a):

Since f is 1-1, it follows that:

gf (a) = a:

Thus:

(g � f )(a) = a for all a 2 A;

i.e., g � f = idA.
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It follows that g, as constructed above, is the inverse of f .

Injective and Surjective
Suppose f (x) = f (y) for some x; y 2 A.

) g(f (x)) = g(f (y))

) (g � f )(x) = (g � f )(y)
) idA(x) = idA(y)

) x = y :

Thus, f is injective.

3.6 Surjective
Let b 2 B.

idB = f � g
Evaluate at b :

b = (f � g)(b) = f (g(b))

Thus, b = f (something in A).
Since b is arbitrary, f is surjective.

Equivalence Relation
Definition: An equivalence relation � on the set X is a relation �� X �X satisfying:

We write x � y instead of (x; y) 2� :

� (Reflexivity) x � x for all x 2 X.

� (Symmetry) x � y if and only if y � x for all x; y 2 X.

� (Transitivity) x � y and y � z implies x � z for all x; y ; z 2 X.

3.7 Example 1
Let X = R.

Define x � y by: x � y = 2�k for some k 2 Z.
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� (Reflexivity) For all x 2 R:

x � x = 0 = 2� � 0 2 Z:

Thus, x � x .

� (Symmetry) x � y ) x � y = 2�k for some k 2 Z.

) y � x = 2�(�k) 2 Z:

Thus, y � x .

� (Transitivity) x � y and y � z ) x � y = 2�m and y � z = 2�n for some m; n 2 Z.

) (x � y) + (y � z) = 2�(m + n) 2 Z:

Thus, x � z .

3.8 Example 2
Let E be the union of 3 disconnected disks in R2.

Let X = E.
Define x � y if there is a continuous path from x to y entirely within E.

� (Reflexivity) For all x 2 E, the constant path p(t) = x for all t 2 [0; 1] is continuous and satisfies
p(0) = p(1) = x . Thus, x � x .

� (Symmetry) Suppose x � y . Then there is a continuous path p : [0; 1] ! E with p(0) = x and
p(1) = y . Define p(t) = p(1 � t). Then p is continuous and satisfies p(0) = y and p(1) = x . Thus,
y � x .

� (Transitivity) Let x � y and y � z . Then there are continuous paths p : [0; 1]! E with p(0) = x and
p(1) = y , and q : [0; 1]! E with q(0) = y and q(1) = z . Define r : [0; 1]! E by:

r(t) =

p(2t) 0 � t � 1
2

q(2t � 1) 1
2 � t � 1

Then r is a continuous path in E with r(0) = x and r(1) = z . Thus, x � z .

4 January 15, 2025

4.1 Equivalence Relations and Equivalence Classes
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Definition 17
Let � be an equivalence relation on a set X. Let x 2 X. The equivalence class of x is

[x ] := fy 2 X : y � xg � X

An equivalence class in X is a subset of X of the form [x ] for some x 2 X.

Fact 18
The equivalence classes of X partition X into disjoint subsets. This partition completely encapsulates the
equivalence relation.

Proposition 19
Let a; b 2 X. Either:

� [a] and [b] are disjoint

� [a] = [b]

Proof. Suppose [a] and [b] are not disjoint. Let t 2 [a] \ [b]. Then t � a and t � b.

) a � t and t � b (by symmetry)

) a � b (by transitivity)

This implies that [a] = [b]:

If y � a; by (a � b) and transitivity, y � b too.
If y � b; by (b � a) and symmetry, y � a:

It follows that

[a] = fy 2 X : y � ag = fy 2 X : y � bg = [b]

The latter proposition shows that equivalence classes on X partition X:

X =
⊔
i2I

Ai

Definition 20
Let X =

⊔
i2I Ai be the partition of X into equivalence classes for �. We call any subset S � X a

complete set of equivalence class representatives if it contains exactly one element xi 2 Ai for every i 2 I,
i.e., ”exactly one element per equivalence class”.
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In practice, understanding an equivalence relation amounts to understanding its associated equivalence
classes and complete sets of equivalence class representatives.

4.2 Examples of Equivalence Classes
1. Let X = R and define the equivalence relation � by x � y if and only if x � y 2 2� � Z.

The equivalence class of x is:
[x ] = fx + 2�k : k 2 Zg � R

Every z 2 R lies in an equivalence class, namely [z ]. If [x ] and [y ] contain a common element t, then
there exist k; l 2 Z such that:

x + 2�k = t = y + 2�l =) x � y = 2�(l � k) =) x � y

This implies [x ] = [y ]. Therefore, we have:

R =
⊔
[z ]

[z ]

The interval [0; 2�) is a complete set of equivalence class representatives.

2. Let X be the set of all 2� 2 matrices, and define the equivalence relation � by x � y if there exists a
continuous path p : [0; 1]! X with p(0) = x and p(1) = y .

The equivalence classes are the connected components of X. For example, if X consists of three disjoint
disks D1;D2;D3, then:

X = D1 t D2 t D3

A complete set of equivalence class representatives is f�1; �2; �3g, where �i 2 Di for i = 1; 2; 3.

3. Let X = R2 and define the equivalence relation � by (a; b) � (c; d) if and only if a2 + b2 = c2 + d2.

The equivalence class of (a; b) is the set of all points in R2 that lie on the circle centered at the origin
with radius

p
a2 + b2.

Problem 21
Verify that the above defines an equivalence relation.

Equivalence classes:

[(a; b)] = f(x; y) 2 R2 : x2 + y2 = a2 + b2g

f(x; y) 2 R2 : x2 + y2 = a2 + b2g
is the collection of points in R2 having the same distance from (0; 0) as (a; b), i.e., it is the circle in

R2 centered at (0; 0) passing through (a; b).
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Equivalence classes for � on R2: circles centered at (0; 0).

R2 =
⊔

a2R�0
[(a; 0)]

and f(a; 0) : a 2 R>0g is a complete set of equivalence class representatives.

5 January 17, 2025

5.1 Mathematical Induction

Definition 22
Let fP (n)gn2N be statements indexed by n 2 N = f0; 1; 2; : : :g. Suppose

(a) P (0) is true

(b) P (m) true ) P (m + 1) true for all m 2 N.

Then P (n) is true for all n 2 N.

Fact 23
The following are true for a mathematical induction:

� (a) is the base case of the induction

� (b) is the inductive step

� Assuming P (m) is true (in order to prove that P (m + 1) is true) is the inductive hypothesis.

5.1.1 Visualizing Induction

Picture the statements P (0); P (1); P (2); : : : as dominoes 0; 1; 2; : : : lined up in some way. Our goal is to
prove that all P (n); n 2 N are true, amounting to toppling over every domino.

0

0+1

1

1+1

2

2+1

3

3+1

4

4+1

5

5+1

Base case , we push over domino 0.
Inductive step , if domino m topples, then domino m + 1 topples too.
Inductive hypothesis ,
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Remark 24. The inductive step is usually the hardest part of an inductive argument. However, as the above
analogy shows, the base case is essential too: if no domino is pushed over, none will topple!

5.2 Examples
1. Prove that

1 + 2 + � � �+ n =
n(n + 1)

2

Proof. Let P (n) := 1 + � � �+ n =
n(n+1)

2 .

Base case: When n = 0, the LHS = 0 (since the sum is empty) and the RHS = 0 too. So P (0) is true.
Inductive Step: Suppose P (m) is true, i.e.,

1 + � � �+m =
m(m + 1)

2

Then
1 + � � �+m + (m + 1) = (1 + � � �+m) + (m + 1)

=
m(m + 1)

2
+ (m + 1) (by our inductive hypothesis)

= (m + 1)
(m
2

+ 1
)

= (m + 1)

(
m + 2

2

)
=

(m + 1)(m + 2)

2

So P (m + 1) is true too.

It follows, by induction, that P (n) is true for all n 2 N, i.e.,

1 + 2 + � � �+ n =
n(n + 1)

2

2. Let fn = nth Fibonacci number, defined as the nth term of the sequence defined recursively by:


f0 = 0

f1 = 1

fn = fn�1 + fn�2 if n � 2

n 0 1 2 3 4 5 6 7 8
fn 0 1 1 2 3 5 8 13 21

Now that
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fn =
1p
5

[(
1 +
p
5

2

)n

�
(
1�p5

2

)n
]

Note: T� := 1�p5
2 are the two roots of the quadratic equation x2 = x + 1. T+ is known as the golden

ratio.

Proof. Let P (n) denote the statement

fn =
1p
5

(
T n
+ � T n

�
)

We prove that P (n) is true for all n 2 N by induction:

Base case: n = 0:
f0 = 0 =

1p
5

(
T 0
+ � T 0

�
)

f1 = 1 =
1p
5

((
1 +
p
5

2

)1

�
(
1�p5

2

)1
)

=
1p
5

(
T 1
+ � T 1

�
)

Inductive step: Suppose P (k) is true for all k < m. We will prove that P (m) is true too:

If m = 0 or m = 1, we verified that P (m) is true in our base case. Suppose m � 2.

fm = fm�1 + fm�2 (defining recursion for fm)

=
1p
5

(
Tm�1
+ � Tm�1

�
)

(since P (m � 1) is true, by hypothesis)

+
1p
5

(
Tm�2
+ � Tm�2

�
)

(since P (m � 2) is true, by hypothesis)

=
1p
5

(
Tm�1
+ + Tm�2

+

)� 1p
5

(
Tm�1
� + Tm�2

�
)

=
1p
5

(
Tm�2
+ (T+ + 1)

)� 1p
5

(
Tm�2
� (T� + 1)

)
=

1p
5

(
Tm�2
+ � T 2

+

)� 1p
5

(
Tm�2
� � T 2

�
)

=
1p
5

(
Tm
+ � Tm

�
)

Thus, P (m) is true too. It follows that P (n) is true for all n 2 N, i.e.,

fn =
1p
5

(
T n
+ � T n

�
)

for all n 2 N

The above proof uses the strong form of mathematical induction.
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Theorem 25 (Principle of Mathematical Induction (strong form))
Let fP (n)gn2N be statements indexed by n 2 N = f0; 1; 2; : : :g. Suppose

� (a) P (0) is true

� (b) P (0); P (1); : : : ; P (m)) P (m + 1) true for all m 2 N.

Then P (n) is true for all n 2 N.

Proof. Let Q(n) be the statement that

P (0); P (1); : : : ; P (n) are all true.

Q(0) is true P (0) is true. Suppose Q(m) is true, i.e.,

P (0); : : : ; P (m) are all true.

By (b) (the strong inductive step), P (m + 1) is true.
Thus, P (0); : : : ; P (m); P (m + 1) are all true by (b). It follows that Q(m + 1) is true too. By induction,

Q(n) is true for all n 2 N, implying that P (n) is true for all n 2 N.

6 January 22, 2025

6.1 Well-Ordering Principle

Theorem 26 (Well-ordering principle)
Let S � N be non-empty. Then S contains a least element t, i.e.,

� t 2 S

� t � s for all s 2 S

Proof. Let t 2 S. Consider the subset S0 = fs 2 S : s � tg = S\f0; : : : ; tg. Since S0 is a non-empty subset
of f0; : : : ; tg, it is finite. Therefore, S0 has a least element, say t 0. By construction, t 0 2 S0 and t 0 � s for all
s 2 S0. Since S0 � S, it follows that t 0 2 S and t 0 � s for all s 2 S. Thus, t 0 is the least element of S.

Corollary 27
t 0 2 S is a minimal element of S.

Proof. By construction, t 0 2 S and t 0 � t. For any s 2 S, if s � t, then s 2 S0. By the definition of t 0, we
have t 0 � s. If s =2 S0, then s > t, and since t � t 0, it follows that s > t 0. Therefore, t 0 � s for all s 2 S.

This shows that t 0 is the least element of S.
To prove that every finite subset of N contains a least element, we use mathematical induction. We will

show that the well-ordering principle implies the strong form of induction.
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6.2 Connection between the Well-Ordering Principle and Induction

Theorem 28
Assume the well-ordering principle holds. Then the strong form of induction holds too: Suppose fP (n)gn2N
are statements for which:

(a) P (0) is true

(b) P (0); : : : ; P (m � 1) true ) P (m) true for all m 2 N>0.

Then P (n) is true for all n 2 N.

Proof. Let S = fn 2 N : P (n) is falseg. We want to prove that S is empty.
Suppose S is non-empty. Let t 2 S be a least element. Since P (0) is true, 0 =2 S. Therefore, t 6= 0, i.e.,

t � 1. Since 0; 1; : : : ; t � 1 < t, it follows that 0 =2 S; 1 =2 S; : : : ; t � 1 =2 S, i.e., P (0); P (1); : : : ; P (t � 1)

are all true. By assumption (b), it follows that P (t) is true, i.e., t =2 S. This contradicts t 2 S.
It follows that S is empty, i.e., P (n) is true for all n 2 N.

The well-ordering principle perspective often reveals what you should take as the base case for an inductive
argument.

6.3 Examples
1. 

F0 = 0

F1 = 1

Fn = Fn�1 + Fn�2

for n � 2:

Prove that

Fn =
1p
5

(
T n
+ � T n

�
)

for all n 2 N:

T� =
1�p5

2
; the roots of x2 = x + 1

Proof. Let S = fn 2 N : Fn 6= 1p
5

(
T n
+ � T n�

)g. We want to prove that S is empty.

Suppose S is non-empty. Let t be the least element of S.

� Suppose t � 2. Then

– (a) Ft�1 = 1p
5

(
T t�1
+ � T t�1

�
)

since t � 1 2 N n S
– (b) Ft�2 = 1p

5

(
T t�2
+ � T t�2

�
)

since t � 2 2 N n S
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� Note: We assume t � 2 here. Otherwise, t � 1 and t � 2 are not both natural numbers.

Ft = Ft�1 + Ft�2 (by the recursive definition of Fibonacci numbers)

=
1p
5

(
T t�1
+ + T t�2

+

)� 1p
5

(
T t�1
� + T t�2

�
)

=
1p
5

(
T t�2
+ (T+ + 1)

)� 1p
5

(
T t�2
� (T� + 1)

)
=

1p
5

(
T t�2
+ � T 2

+

)� 1p
5

(
T t�2
� � T 2

�
)

=
1p
5

(
T t
+ � T t

�
)

Thus, Ft = 1p
5

(
T t
+ � T t�

)
, implying t =2 S. This contradicts t 2 S. It follows that t = 0 or t = 1.

Remark 29. Three ”leftover cases” form our base case, since our main argument above did not address
either of these edge cases.

� If t = 0,
F0 = 0 =

1p
5

(
T 0
+ � T 0

�
)
; so 0 =2 S

� If t = 1,
F1 = 1 =

1p
5

(
T 1
+ � T 1

�
)
; so 1 =2 S

We’ve shown:

� If t � 2, then t cannot be a least element of S.
� If t = 0 or t = 1, then t =2 S.

Thus, S contains no least element. This contradicts S being non-empty (by the well-ordering principle).

It follows that S is empty, i.e.,

Fn =
1p
5

(
T n
+ � T n

�
)

for all n 2 N

This perspective is also helpful for rooting out false statements you might try to prove by induction.

2. Let P (n) be the statement:

P (n) : All collections of n boxes are the same color.

We know, from life experience, this statement is false.

Let’s see why:

Let S = fn 2 N : P (n) is falseg.
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Suppose S is non-empty. Let t be the least element of S. Suppose t � 3. Then P (1) and P (2) are
true (since 1; 2 =2 S by minimality of t). Let f1; : : : ; tg be any collection of t boxes. Divide them into
two sets

A = f1; : : : ; t � 1g and B = f2; : : : ; tg

Since t is minimal, P (t � 1) is true. So all boxes in A are some common color, call it a. Likewise, all
boxes in B are some common color, call it b. Since t � 3, the sets A and B overlap. Thus a = b. It
follows that f1; 2; : : : ; tg are all the same color, i.e., P (t) is true. Thus t =2 S, contradicting t 2 S.
Thus, if t � 3, t cannot be a minimal element of S.

For t = 1, P (1) is clearly true. So 1 =2 S. For t = 2, P (2) is not necessarily true. So at this very last
step, our argument breaks down!

7 January 24, 2025

7.1 Arithmetic of Z
We turn from counting properties of Z and N—these feature prominently in induction:

0 !
next

1 !
next

2 !
next

3

to the basic arithmetic operations in Z: x; r; � � �
What about division?

Definition 30
Let a; b 2 Z. We say that b divides a / a is a multiple of b / a is divisible by b if a = bk for some k 2 Z.
We write that as following

b j a

Example 31
The following could be an example:

� Every integer b divides 0.

� Every integer is divisible by 1.

Fact 32
If b 6= 0, then b divides a iff the rational number a

b
is actually an integer.
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Example 33

50

7
= 7:14 (not an integer. So 7 does not divide 50.)

7.2 The Division Algorithm

Theorem 34
Let a; b 2 Z, b 6= 0. Then there exist

� k 2 Z
� r 2 Z with jr j < jbj

satisfying:

a = bk + r

Proof. Let a
b
= k + � for some k 2 Z and � 2 Q where 0 � � < 1. Multiplying both sides by b, we get:

a = kb + �b

Define r = �b. Then:

a = kb + r

Since 0 � � < 1, it follows that 0 � r < jbj. Therefore, r is an integer satisfying 0 � r < jbj.
Thus, we have:

a = kb + r

where k 2 Z and r 2 Z with 0 � r < jbj.

The result follows.

Remark 35. In the above proof, we could take �1
2 � � � 1

2 (as opposed to 0 � � < 1). For r = a�kb = b�,

jr j = j�bj

� jbj
2

7.3 Common Divisors
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Definition 36
Let a; b 2 Z. A common divisor d of a and b is an integer d 2 Z for which:

� d j a
� d j b

Example 37
Let’s consider the following examples:

� a = anything; b = 0 {
common divisors
of a and b = 0

}
= fdivisors of ag

� a = 26 = 2 � 13
b = 65 = 5 � 13{

common divisors
of 26 and 65

}
= f�1;�13g

� a = 91; b = 15 {
common divisors
of 91 and 15

}
= f�1g

� a = 32 = 2 � 2 � 2 � 2 � 2

b = 16 = 2 � 2 � 2 � 2{
common divisors
of 32 and 16

}
= f�1;�2;�4;�8;�16g

In all of these examples, observe that there is a common divisor d of a and b divisible by all other
common divisors.

Definition 38
d 2 Z is a greatest common divisor of a; b 2 Z if:

1. d is a common divisor of a and b

2. if e 2 Z is a common divisor of a and b, then e j d .

Lemma 39
Let a; b 2 Z. Let e; d be greatest common divisors of a and b. Then d = �e.

Proof. If a and b both equal 0, then 0 is a greatest common divisor of a and b and is the only one. If not
both a and b equal 0, then e and d are necessarily non-zero (since 0 does not divide any non-zero integer).
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Since d is a greatest common divisor of a and b, it follows that d j e. Therefore, there exists some integer
k 2 Z such that:

e = kd

Similarly, since e is also a greatest common divisor of a and b, it follows that e j d . Therefore, there exists
some integer j 2 Z such that:

d = je

Combining these two equations, we get:

d = je = j(kd) = d � jk

This implies:
d(1� jk) = 0

Since d 6= 0, it follows that:
1� jk = 0

Hence:
jk = 1

This means that j and k must be �1. Therefore:

d = je = �e

Thus, d and e are equal up to a sign.

7.4 Euclidean Algorithm

Fact 40
Let a; b 2 Z. Then {

common divisors
of a and b

}
=

{
common divisors
of a � b and b

}

Proof. � Suppose d is a common divisor of a and b. Then a = jd and b = kd for some j; k 2 Z.

a � b = jd � kd

= (j � k)d

) d divides a � b

and
b = kd ) d divides b:
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Thus, d is a common divisor of a � b and b. It follows that{
common divisors
of a and b

}
�
{

common divisors
of a � b and b

}

Suppose d divides a � b and b. Then a � b = jd and b = kd for some j; k 2 Z.

a = (a � b) + b

= jd + kd

) d divides a

and
b = kd ) d divides b:

� Thus, d is a common divisor of a and b.

It follows that {
common divisors
of a � b and b

}
�
{

common divisors
of a and b

}
Combining the latter two containments:{

common divisors
of a and b

}
=

{
common divisors
of a � b and b

}

More generally, the exact same proof technique may be used to prove:{
common divisors
of a and b

}
=

{
common divisors
of a � kb and b

}

for every integer k .

7.5 Euclidean Algorithm
Let CD(a; b) denote the set of common divisors of a; b 2 Z.

Input: (a; b); a; b 2 Z with b 6= 0 and jbj � jaj.
Output: A pair (d; 0) with

CD(a; b) = CD(d; 0)

Note:
� Since d 2 CD(d; 0) = CD(a; b), d is a common divisor of a and b.

� If e 2 CD(a; b) = CD(d; 0), then e divides d and e divides 0.

� Thus, d is a greatest common divisor of a and b.

The Algorithm:

1. If b = 0, return (a; 0).
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2. Otherwise, find A 2 Z for which

r = a � Ab satisfies jr j < jbj:

(By the division algorithm, this is always possible)

3. Replace (a; b) by (a�; b�) := (b; r).

� Go to (1) if b� = 0

� Go to the start of step (2) if b� 6= 0

Proposition 41
The Euclidean algorithm terminates.

Proof. Let (an; bn) be the nth pair calculated in the process of running the Euclidean algorithm. The pair

(a0; b0); (a1; b1); (a2; b2); : : : (a; b)

satisfy:
� jamj � jbmj
� (am+1; bm+1) = (a�m; b�m)

By construction,

jb�mj < jbmj:
So jb0j > jb1j > : : : is a strictly decreasing sequence of natural numbers. Therefore, the sequence must

terminate at by going to step (1) and outputting (an; bn) = (an; 0) for some (finite) n 2 N. This proves the
algorithm terminates.

Remark 42. Given x; y 2 Z, we’ve seen that we can find A 2 Z for which r = x�Ay satisfies jr j � jy j=2. Ap-
plying this choice of r consistently throughout the running of the Euclidean algorithm, Euclidean_Algorithm(a; b)

runs in time O(log2 jbj).
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7.6 Examples
1. Let’s find the gcd of 576 and 243.

(576; 243) = (243; 576� 2 � 243)
= (243; 90)

= (90; 243� 2 � 90)
= (90; 63)

= (63; 90� 1 � 63)
= (63; 27)

= (27; 63� 2 � 27)
= (27; 9)

= (9; 27� 3 � 9)
= (9; 0)

Thereofore,
gcd(576; 243) = 9

2. Let’s find the gcd of 101 and 66.

(101; 66) = (66; 101� 1 � 66)
= (66; 35)

= (35; 66� 1 � 35)
= (35; 31)

= (31; 35� 1 � 31)
= (31; 4)

= (4; 31� 7 � 4)
= (4; 3)

= (3; 4� 1 � 3)
= (3; 1)

= (1; 3� 3 � 1)
= (1; 0)

Thereofore,
gcd(101; 66) = 1

3. Let’s find the gcd of 104 and 80.
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(104; 80) = (80; 104� 1 � 80)
= (80; 24)

= (24; 80� 3 � 24)
= (24; 8)

= (8; 24� 3 � 8)
= (8; 0)

Thereofore,
gcd(104; 80) = 8

8 January 29, 2025
We describe an enhanced version of the Euclidean algorithm that allows us to solve the equation

xa + yb = d for x; y 2 Z; d = gcd(a; b)

Proposition: Let a; b 2 Z. Suppose there are integers x; y 2 Z for which

Proposition 43

x � a + y � b = d

for some common divisor d of a and b. Then d is a greatest common divisor of a and b.

Proof. By assumption, d is a common divisor of a and b.
- Suppose e j a and e j b. Then

e j xa and e j yb =) e j (xa + yb) = d:

It follows that d is a greatest common divisor of a and b.

8.1 The Algorithm
Let a; b 2 Z with jaj � jbj.

1. Form a 3-column table:

d x y
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2. Initialize the first two rows as:

e x y

a 1 0

b 0 1

3. Note: xa + yb = e where (e; x; y) forms a row in this table.

4. Run the Euclidean algorithm in the left column of the table:

e x y

e 0 x 0 y 0

e 00 x 00 y 00

In particular,

e 0 = x 0a + y 0b

e 00 = x 00a + y 00b

By the division algorithm, we can find k 2 Z for which e 000 := e 0 � ke 00 satisfies je 000j � je 00j.
Add the new bottom row

R000 := R0 � kR00

to our table:

e x y

e 0 x 0 y 0

e 00 x 00 y 00

e 000 x 000 y 000

Note that the relation x 000a + y 000b = e 000 holds for the new bottom row of our table too, since it holds
for the second-to-bottom and third-to-bottom rows too:

x 000a + y 000b = (x 0 � kx 00)a + (y 0 � ky 00)b

= (x 0a + y 0b)� k(x 00a + y 00b) (regrouping terms)
= e 0 � k � e 00

= e 000

5. Stop adding new rows once the bottom two rows become.

By the theory of the Euclidean algorithm,

d = gcd(a; b)
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Furthermore, since xa + yb = e for every row (e; x; y) from our table, it follows that

x0 � a + y0 � b = d

Problem 44
Consider the following problems:

� Prove that gcd(x1; y1) = 1.

� (HARD) Prove that a = �d � y1 and b = �d � x1.

8.2 Examples
1. Extended Euclidean algorithm for (596; 243):

e x y

596 1 0

243 0 1

90 1 �2
63 �2 5

2. Extended Euclidean algorithm for (3587; 1819):

e x y

3587 1 0

1819 0 1

�51 1 �2
34 35 �69
�17 36 �71
0 107 �211

We read off:


�17 = 36� 3587 + (�71)� 1819 (from the next to last row)
3587 = 17� 211

1819 = 17� 107

9 January 31, 2025
We proved:
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Proposition 45
Let a; b 2 Z. Let d = gcd(a; b). There exist integers x; y 2 Z such that

xa + yb = d:

Not only did we prove this abstract existence statement, but we saw how to extract x; y from the output
of the Extended Euclidean Algorithm.

9.1 Ideals in the set of Real Numbers
I = fxayb : x; y 2 Zg � Z is an ideal in the ring Z if and only if:

� I is closed under +, �, and 0 2 I.

� r � i 2 I for all i 2 I and r 2 Z.

The above proposition showed that every ideal in Z consists of multiples of a single element. Thus, Z is a
so-called principal ideal domain. More on this later.

9.2 An important application of the above proposition:

Lemma 46
Let a; b 2 Z; n 2 Z with n 6= 0. Suppose

� n j ab
� gcd(a; n) = 1.

Then n j b.

Proof. Since gcd(a; n) = 1, we can find integers x; y such that

1 = x � a + y � n

Multiply both sides of (f) by b:

b = (x � a + y � n) � b
= x � (ab) + (yb) � n ) b is a multiple of n by (i):

9.3 Application to primes and prime factorization
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Definition 47
Let p 2 Z; p � �1. p is prime if

fdivisors of pg = f�1;�pg:

Example 48 � Prime: 2; 3; 5; 7; 11; 13; 17; 19; : : :

� Not prime: 4 = 2� 2; 6 = 2� 3; 9 = 3� 3; 91 = 13� 7

Fact 49
Non-prime integers are otherwise known as composite.

9.4 Sieve of Eratosthenes
(An algorithm to list all primes in f2; 3; : : : ; Ng)

1. Begin with L = f2; 3; : : : ; Ng; P = �.

2. Add the smallest element s of L to P and then remove s and all of its multiples from L.

3. Continue doing this until all elements are removed from L.

Problem 50
The final P consists of all prime numbers in f2; : : : ; Ng.

9.5 Factorization into primes

Proposition 51
Let n 2 N with n 6= 0. Then n factors as a product of primes.

Proof. We prove this by induction on n.
Base case: n = 1. Then n = 1 is the empty product of primes.
Inductive step: Let m � 2. Suppose that for 1 � k < m, k can be expressed as a product of primes.

� If m is prime, m = m expresses m as a product of 1 prime.

� If m is not prime, m = ab for some 1 < a; b < m.

Since 1 � a = m=b < m and 1 � b = m=a < m, we can express a and b as products of primes:

a = p1 : : : pj p1; : : : ; pj prime
b = q1 : : : qt q1; : : : ; qt prime
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Then m = ab = (p1 : : : pj)(q1 : : : qt) expresses m as a product of primes, thus completing the inductive
step.

It follows, by induction, that every integer n � 1 can be expressed as a product of primes.

As an application, we can prove the infinitude of primes:

Theorem 52
There are infinitely many primes p 2 Z.

Proof. Let n 2 Z>1.
Consider n! + 1, where n! = n � (n � 1)� � � � � 2� 1.
Since n! is a product of integers from 1 to n, any prime factor p of n! + 1 must satisfy p j n! + 1.
Claim: p > n.
Suppose for contradiction that p � n.
Since p � n, p must divide n!. Therefore, p j n!.
But p j n! + 1 and p j n! imply p j (n! + 1) � n! = 1, which is a contradiction since no prime number

divides 1.
Hence, p > n as claimed.
Therefore, for every n 2 Z>1, there exists a prime number p > n. This implies that there are infinitely

many primes.

9.6 An important characterization of primes

Theorem 53
p 2 Z is prime , for all a; b 2 Z, p j ab implies p j a or p j b.

Proof. (() Suppose p is not prime. Then p = ab for some a; b 2 Z with a; b 6= �1. Then p j p = ab but
p - a and p - b.

()) Suppose p is prime. Suppose p j ab. Note that{
common divisors
of a and p

}
�
{

divisors of
p

}
= f�1;�pg

Since �p are not divisors of a,{
common divisors
of a and p

}
= f�1g ; i.e., gcd(a; p) = �1

By our earlier key lemma, since p j ab and gcd(a; p) = �1, it follows that p j b.

Theorem 54
Let p 2 Z be prime. Let a1; : : : ; an 2 Z be integers for which p j a1 : : : an. Then p j a1 or p j a2 : : : an.
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Proof. We prove this by induction on n.
Base case: n = 2. This is the previous case, which states that if p j a1a2, then p j a1 or p j a2.
Inductive step: Suppose the statement is true for some n � 2. That is, if p j a1 : : : an, then p j a1 or

p j a2 : : : an.
We need to show that the statement is true for n + 1. Suppose p j a1a2 : : : anan+1. By the inductive

hypothesis, applied to the product a1a2 : : : an, we have p j a1 or p j a2 : : : an.
� If p j a1, we are done.

� If p j a2 : : : an, then by the base case applied to the product (a2 : : : an)an+1, we have p j a2 : : : an implies
p j a2 or p j a3 : : : an.

Continuing this process, we eventually conclude that p j a1 or p j a2 or : : : or p j an+1.
Therefore, by induction, the statement is true for all n � 2.

We use the latter characterization of primes to prove uniqueness of prime factorization.

Theorem 55
Every integer n 6= 0 can be written in a unique way as a product of primes.

More formally, if

n = pe11 � � � pekk p1; : : : ; pk distinct primes e1; : : : ; ek 2 Z�1
n = qf11 � � � qfll q1; : : : ; ql distinct primes f1; : : : ; fl 2 Z�1

Then k = l and (q1; : : : ; ql) is a rearrangement of (p1; : : : ; pk), i.e., qi = p�(i) for some bijection
� : f1; : : : ; kg ! f1; : : : ; kg and fj = e�(j).

Proof. We prove this by induction on n.
Base case: n = 1. n = 1 can only be factored as the empty product over primes. Thus, its factorization

into primes is unique.
Inductive step: Let m � 2. Suppose every 1 � k < m can be factored uniquely as a product of primes.
Suppose

m = pe11 � � � pekk p1; : : : ; pk distinct primes e1; : : : ; ek 2 Z�1
m = qf11 � � � qfll q1; : : : ; ql distinct primes f1; : : : ; fl 2 Z�1

are two factorizations of m. Let p = p1.
By (i), p j m. By (ii), p j m = qf11 � � � qfll . By our product characterization of primes, (i) implies p j q1 or

: : : or p j ql .
Since the q’s are prime, p j qi is equivalent to p = qi .
Thus, p = q1 or : : : or p = ql .
Suppose WLOG that p1 = p = q1.
Then

m=p = pe1�11 pe22 � � � pekk = qf1�11 qf22 � � � qfll
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Continuing by the same argument (and letting q1 play the role of p1 too), we can prove that

p1 = p = q1

e1 = f1

Consider

m=pe1 = pe22 � � � pekk
m=qf11 = qf22 � � � qfll

By inductive hypothesis (since 1 � m=pe1 < m),

k � 1 = l � 1

= (q2; : : : ; ql) is a rearrangement of (p2; : : : ; pk) via a bijection � : f2; : : : ; kg ! f2; : : : ; kg
qj = p�(j) for j = 2; : : : ; l

fj = e�(j) for j = 2; : : : ; k

The inductive step follows from this:

k � 1 = l � 1) k = l

= (q2; : : : ; ql) a rearrangement of (p2; : : : ; pk) via � : f2; : : : ; kg ! f2; : : : ; kg
) (q1; : : : ; ql) is a rearrangement of (p1; : : : ; pk) via ~� : f1; 2; : : : ; kg ! f1; 2; : : : ; kg

~�(x) =

�(x) if x 6= 1

1 if x = 1

fj = e�(j) for j = 2; : : : ; k

) fj = e�(j) for j = 1; : : : ; k (since �(1) = 1):

By induction, unique factorization in Z follows.

10 February 3, 2025
We abstract the properties we need for arithmetic in:

10.1 Grade School Algorithm for Multiplication
123 + 5 = ((100 + 1 + 10 + 2) + 1 + 3) + 5

= (100� 1 + 10� 2) + 5 + (1 + 3) + 5

= (100 + 1) + 5 + (10� 2) + 5) + (+3) + 5

= (100� (1� 5) + 10 + (2� 5)) + (0 + 1 + 1 + 5)

= ((100 + (1� 5) + 10 + (2� 5)) + 10 + 1) + 1� 5
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= (100 + (1� 5) + (10 + (2� 5) + 10 + 1)) + 115

= (100� (1� 5) + 10 + (2 + 5 + 1)) + 15

= (100 + (1 + 5) + 10 + (11)) + 1�
= (100 + ((�5) + 10� (10 + 1)) + 1

= (100 + (1� 5) + (10 + 10 + 10� 1)) + 1

= (100 + (1� 5) + (100 + 1) + 10 + 1) + 1�
= (100 + (1� 5) + 100� 1) + 10� 1) + 1 + 5

= (100� (1� 5 + 1) + 10 + 1) + 15

= (100 + 6 + 10 + 1) + 1 + 5

= 615

Tracing through, we repeatedly used:
� (a + b) + c = a + (b + c)

� (a � b) � c = a � (b � c)
� (a + b) � c = a � c + b � c
These form the basis for the ring axioms.

10.2 Definition: Ring
A ring (R;+; �; 0; 1) is a set R equipped with binary operations + : R � R ! R and � : R � R ! R, and
elements 0; 1 2 R subject to the following axioms:

10.2.1 Addition-only

(A1) (a + b) + c = a + (b + c) for all a; b; c 2 R

(A2) a + 0 = 0 + a = a for all a 2 R

(A3) For every a 2 R, there exists an element �a 2 R satisfying:

a + (�a) = (�a) + a = 0

(A4) a + b = b + a for all a; b 2 R

10.2.2 Multiplication-only

(M1) (a � b) � c = a � (b � c) for all a; b; c 2 R

(M2) a � 1 = 1 � a = a for all a 2 R

(M3) a � b = b � a for all a; b 2 R
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10.2.3 Distributive Properties

(D1) (a + b) � c = a � c + b � c for all a; b; c 2 R

(D2) a � (b + c) = a � b + a � c for all a; b; c 2 R

10.3 Remark
The axioms above will always be our default ring axioms. Be aware, however, that in some contexts, it is
natural to assume/not assume (M2) and to assume/not assume (M3). The result is 2� 2 = 4 different types
of rings:

� (M2); (M3): Commutative ring with 1

� (M2); (:M3): Non-commutative ring with 1

� (:M2); (M3): Commutative ring without 1

� (:M2); (:M3): Non-commutative ring without 1

As noted above, we assume our rings to be of (M2); (M3) type, i.e., commutative rings with 1, unless
otherwise stated.

10.4 Examples
1. (Z;+; �; 0; 1), the integers with their usual operations of addition, multiplication, and 0, 1, are a ring.

2. Let n � 2, n 6= 0; 1. Define Z=nZ to be the set of equivalence classes for Z equipped with the equivalence
relation:

a � b () a � b is a multiple of n:

Let [a] denote the equivalence class represented by a.

We equip Z=nZ with two binary operations:

[a] + [b] := [a + b]

and
[a] � [b] := [a � b]:

Claim: The latter operations are well-defined, i.e., if [a] = [a0] and [b] = [b0], then

[a0 + b0] = [a + b]

and
[a0 � b0] = [a � b]:

Proof: Since [a] = [a0] and [b] = [b0], we have

a0 = a + jn and b0 = b + kn
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for some j; k 2 Z. Note that
a0 + b0 = a + b + (j + k)n

and
a0 � b0 = (a + jn) � (b + kn) = a � b + (a � k + b � j + j � k � n)n:

Thus,
[a0 + b0] = [a + b]

and
[a0 � b0] = [a � b]

as claimed.

Z=nZ equipped with the latter binary operations and 0 := [0], 1 := [1] is a ring.

Proof: We’ll check just (D1) to give a flavor of how this is proved. (All other ring axioms are proved
similarly.)

([a] + [b]) � [c ] = [a + b] � [c ] = [(a + b) � c ] = [(a � c) + (b � c)]
by (D1) in the ring Z. Thus,

[a � c ] + [b � c ] = [a] � [c ] + [b] � [c ]:

11 February 5, 2025

11.1 Examples of Rings
Last time we we defined abstract rings.

Remark 56. 1 2 R (ring with 1

Fact 57
If you take the set of all integers, and you add and multiply them, you get a ring.

11.1.1 Non-commutative Rings

1. Let V be a vector space over R. The set S = flinear transformations T : V ! V g forms a ring
with addition and composition of transformations. For T; T 0 2 S, the addition T + T 0 is defined by
(T + T 0)(v) := T (v) + T 0(v) for all v 2 V .

2. The zero ring is a ring in which the product of any two elements is zero. It can be defined as R = f0g
with the operations 0+ 0 = 0 and 0 � 0 = 0. This ring has only one element, which is both the additive
and multiplicative identity.

3. If T; T 0 are both linear transformations from V ! V . Then T �T 0 = T �T 0 = ((T � T )(v)) = T (T 0(x)).
That means that the composition of two linear transformations is also a linear transformation.
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Fact 58
If we take two matrices T; T 0 and multiply them together T � T 0 and T 0 � T then they are not the sample.
For example

T =

[
0 0

1 0

]
and

T 0 =

[
0 1

0 0

]

T � T 0 =

[
0 1

0 0

]
and

T 0 � T =

∣∣∣∣∣1 0

0 0

∣∣∣∣∣
Therefore, we proved that composition of two linear transformations is not commutative. However, the
distributive properties hold.

12 February 7, 2025

12.1 Example of using the ring axioms
Let R be a ring.

1. The additive identity element O 2 R is unique, i.e., if O0 2 R is a second element satisfying a + O0 =
O0 + a = a for all a 2 R, then O = O0.

2. Additive inverses in R are unique, i.e., if b + a = a + b = 0 and b0 + a = a + b0 = 0, then b = b0.

3. Additive inverses in R are unique, i.e., if b + a = a + b = 0 and b0 + a = a + b0 = 0, then b = b0.

12.1.1 Proof:

Consider
c = (b0 + a) + b ) associative law for +

= b0 + (a + b)

Using the first expression:
c = (b0 + a) + b

= 0 + b

= b ) b = b0
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Using the second:
c = b0 + (a + b)

= b0 + 0

= b0

12.2 Exercise:
Suppose R is a ring with 1.

1. Prove that the multiplicative identity element 1 is unique.

2. Suppose a 2 R admits a multiplicative inverse b. Then b is unique.

3. a � 0 = 0 � a = 0 for all a 2 R.

12.2.1 Proof for (3):

a � 0 = a � (0 + 0) since 0 = 0 + 0

= a � 0 + a � 0 by the distributive axiom

By the axioms for addition in R, a � 0 admits a (unique) additive inverse b. Adding b to both sides:

0 = a � 0 + b

= (a � 0 + a � 0) + b

= a � 0 + (a � 0 + b) associativity of +
= a � 0 + 0

= a � 0

Thus,
a � 0 = 0

The proof that 0 � a = 0 for all a 2 R is almost identical.

12.2.2 Proof for a � (�b) = �ab:

(�a) � b = �ab for all a; b 2 R

Consider:
(�a) � b + a � b

= ((�a) + a) � b distributive axiom

= 0 � b
= 0 by (3)
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Adding �ab to both sides of the above:

0 + (�ab) = ((�a) � b + a � b) + (�ab)
= (�a) � b + (ab + (�ab)) associativity of +
= (�a) � b + 0

= (�a) � b

Thus, (�a) � b = �ab.
Proving a � (�b) = �ab is entirely similar.

12.2.3 Proof for (�a)(�b) = ab:

(�a)(�b) = ab for all a; b 2 R

Consider:
(�a)(�b) = �(a(�b)) by (4)

= �(�ab) by (4)

= ab

Since ab + (�ab) = 0,
�(�ab) = ab

Thus, (�a)(�b) = ab for all a; b 2 R.

12.3 Subrings

12.3.1 Definition:

Let S � R be a subset. It is a subring if S, with ring operations inherited from those of R, is itself a ring.

12.3.2 Note:

For any subset S � R, the ring operations on R induce mappings:

+ : S � S �! R

� : S � S �! R

Subrings are distinguished by: the above mappings factor through the inclusion S � R:

+ : S � S �! S

� : S � S �! S
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12.3.3 Lemma:

Let R be a ring. Let S � R be a non-empty subset. Then S � R is a subring iff it is closed under multiplication
and subtraction, i.e.,

s1 � s2 (:= s1 + (�s2)) 2 S for all s1; s2 2 S

s1 � s2 2 S for all s1; s2 2 S

12.3.4 Proof:

()) Follows from the definition of ring.
(() Since S is non-empty, s0 2 S for some s0 2 R. Then 0 = s0 + (�s0) 2 S. Also, for all s 2 S,

0 + (�s) 2 S.

) s1 + s2 = s1 � (�s2) 2 S for all s1; s2 2 S

It follows that the ring operation on S induced by those on R factor through S:

+0 : S � S ! S (� R)

�0 : S � S ! S (� R)

The ring axioms on S follow from those on R, e.g., let a; b; c 2 S.

(a + b) � c = a � c + b � c by the distributive axiom in R

But instead of interpreting this as an equality in R, we interpret it as an equality in S (which we may do
since S is closed under + and � in R).

12.4 Examples of subrings
1. Z � Q � R � C (integers, rational numbers, real numbers, and complex numbers all equipped with

their usual + and �). Z � Q is a subring, Q � R is a subring, R � C is a subring, Z � R is a subring,
Z � C is a subring, Q � C is a subring.

2. Z[i ] := fa + bi : a; b 2 Zg � C.

12.4.1 Claim:

Z[i ] � C is a subring.

12.4.2 Proof:

Let a; b; c; d 2 Z.
(a + bi)� (c + di) = (a � c) + (b � d)i 2 Z[i ]
(a + bi) � (c + di) = (ac � bd) + (ad + bc)i 2 Z[i ]
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Since Z[i ] � C is closed under subtraction and multiplication, it is a subring.

12.4.3 Terminology:

Z[i ] is called the Gaussian integers.

3. H = Hamilton quaternions
= fa + bi + cj + dk : a; b; c; d 2 Rg

Addition is coordinate-wise. Multiplication is determined by the table:

i2 = �1 i j = k j i = �i j = �k
j2 = �1 jk = i kj = �jk = �i
k2 = �1 ki = j ik = �ki = j

together with R-bilinearity.

Let O = fa + bi + cj + dk : a; b; c; d 2 Zg.

12.4.4 Claim:

O � H is a subring.

12.4.5 Proof:

O is clearly closed under subtraction.

For every pair �; � 2 f1;�i ;�j;�kg, the above multiplication table shows that

�� 2 f1;�i ;�j;�kg � O

Closure under multiplication follows from this, e.g.,

(2i + 3j) � (5j + 7k) = 2 � 5(i j) + 2 � 7(ik) + 3 � 5(j j) + 3 � 7(jk)
= 2 � 5k + 2 � 7(�j) + 3 � 5(�1) + 3 � 7i
= �3 � 5 + 3 � 7 + (�2 � 7)j + 2 � 5k
2 O

Thus, O � H is a subring.

4. A = ff : R! R : f continuousg
Ring operations:

� + : pointwise addition of functions
� � : pointwise multiplication of functions

42



A0 = ff : R! R : f continuous and compactly supportedg
A0 is closed under � and �, i.e., the difference of compactly supported functions is compactly supported,
and the product of compactly supported functions is compactly supported.

Thus, A0 � A is a subring.

13 February 10, 2025

13.1 Domains and Fields

Definition 59 (Ring)
Let R be a ring. The element 0 6= b 2 R is a zero divisor if there exists some 0 6= c 2 R with bc = 0.

Definition 60 (Integral Domain)
Let R be a ring. R is a domain (or integral domain) if it admits no zero divisors.

Example 61
The set of real numbers R and integers Z is a domain if for ab = 0, for a; b 2 Z then a = 0 or b = 0

Definition 62 (Invertibility)
Let R be a ring with 1. An element b 2 R is invertible if there exists some c 2 R for which bc = cb = 1.
We let Rx = b 2 RR : b is invertible

Let A be the ring of 2� 2 matrices with coefficients in R, with the usual addition and multiplication of 2� 2

matrices. A is a non-commutative ring with identity. Let A0 be the set of invertible 2 � 2 matrices. Then
I 2 A, but I =2 A0. Suppose Z = a + bi 2 C is invertible, i.e., ZB = 1 for some B = c + di 2 C. Then:

�ZB = �Z � B = 1 (where�denotes complex conjugation)

= �BZ = B �Z (since C is commutative)

= (a � bi)(c + di) = (a + b2)(c2 + d2) = 1

It follows that:
(a; b) = (1; 0) or (0; 1)

corresponding to 1 and i . Thus, C = fa + bi : a; b 2 Rg. C is much more interesting:

C = fa + bi : a; b 2 Rg
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Definition 63 (invertible Ring)
Let R be a ring with 1. If all non-zero elements of R are invertible, i.e., R0 = R n f0g, then R is a field if
R is commutative, or a skew field if R is non-commutative.

Example 64
The following are fields:

� Q (skew) are all subrings of fields.

� R;C;H are necessarily integral domains.

� H (Hamilton’s quaternions) = fa+ bi + cj + dk : a; b; c; d 2 Rg with multiplication determined by
R-bilinearity and:

i2 = �1; i j = k; j i = �k;
j2 = �1; jk = i ; kj = �i ;
k2 = �1; ki = j; ik = �j

H is a skew field.

Lemma 65
Let A be a subring of a field F . Then A is an integral domain.

Proof. Suppose x; y 2 A and xy = 0 in A. Then y = 0 in F too. Suppose x 6= 0 in A, so x 6= 0 in F too.
Multiply both sides of xy = 0 by x�1 2 F :

x�1(xy) = x�1 � 0 = 0

(x�1x)y = y = 0 in F

Thus, y = 0 in A. Therefore, A is a domain.

Example 66
The following are also fields:

� Q (skew) are all subrings of fields.

� R;C;H are necessarily integral domains.
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14.1 Matrices
Let A be the ring of 2� 2 matrices with coefficients in R. The operations + and � are the usual addition and
multiplication of 2� 2 matrices.

Consider the matrix t =

(
0 1

0 0

)
.

We have:

t � t =
(
0 0

0 0

)
Thus, t is a zero divisor, and therefore A is not a domain.

14.2 Continuous Functions
Let A be the set of continuous functions f : R! R with pointwise addition and multiplication.

Consider two continuous functions f and g such that for every x 2 R, either f (x) = 0 or g(x) = 0.
The product (f � g)(x) = f (x) � g(x) is zero for all x 2 R.
Thus, f � g = 0 in A, and hence A is not a domain.

14.3 Product Rings
Let R1 and R2 be rings. Define R = R1 � R2 with coordinate-wise addition and multiplication:

(r1; r2) + (r 01; r
0
2) := (r1 + r 01; r2 + r 02)

(r1; r2) � (r 01; r 02) := (r1 � r 01; r2 � r 02)
OR := (OR1

; OR2
)

Then R is not a domain because:

(r; 0) � (0; r2) = (0R1
; 0R2

) = OR

14.4 When is the set of real numbers a domain?
Let n 2 Z with n 6= 0;�1.

14.5 Non-prime natural numbers
If n is not prime, then n = ab for some a; b 6= �1.

[a] � [b] = [ab] = [n] = [0] in Zn

Since [a] and [b] are zero divisors in Zn, Zn is not a domain.
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14.6 Prime natural numbers
If n is prime, then Zn is a domain:

Suppose [a] � [b] = [0] in Zn. Then n j ab.
Since n is prime, n j a or n j b. Thus, [a] = [0] or [b] = [0] in Zn.
Therefore, Zn is a domain.

14.7 Is the set of integers a field when n is prime?
Yes, Zn is a field when n is prime.

Let [a] 2 Zn with [a] 6= [0], i.e., n - a.
Then gcd(a; n) = 1. By the Extended Euclidean Algorithm, there exist integers x and y such that:

xa + yn = 1

Thus,
[x ] � [a] = [1]

So, every non-zero element in Zn has a multiplicative inverse, making Zn a field.

14.8 Finite Ring as a Field

Proposition 67
Let D be a ring with 1. If D is finite, then D is a field.

Proof. Let a 2 D with a 6= 0. Consider the mapping:

�a : D ! D

x 7! a � x
Claim: �a is injective.
Suppose �a(x) = �a(y) for x; y 2 D. Then:

a � x = a � y

a � (x � y) = 0

Since D is a domain and a 6= 0, it follows that x = y . Thus, �a is injective.
Since D is finite and �a is injective, �a is also surjective. Hence, �a is a bijection. In particular, �a(x) = 1

for some x 2 D, i.e., a � x = 1.
Thus, every non-zero element in D is invertible, making D a field.
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Definition 68 (Commutative Ring)
Let R be a commutative ring with 1. An ideal I � R is a subset satisfying the following properties:

1. I 6= ;
2. I is closed under subtraction, i.e., for all i ; j 2 I, i � j 2 I.

3. I is closed under multiplication by R, i.e., for all i 2 I and r 2 R, r � i 2 I.

Here, (2) and (3) imply that:
� 0 2 I

� i + j 2 I for all i ; j 2 I.

Let’s take a look at some examples:

1. For R = any commutative ring with 1,

� R is an ideal of R (often called the unit ideal).
� f0g is an ideal of R, the zero ideal.

2. For any a 2 R, let
(a) = fa � r : r 2 Rg

This is an ideal, called the principal ideal generated by a.

� a = a � 1 2 (a), so (a) 6= ;.
� Let i1 = a � r1, i2 = a � r2 2 (a). Then i1 � i2 = a � r1 � a � r2 = a � (r1 � r2) 2 (a). So (a) is closed

under subtraction.
� Let i = a � s 2 (a). Let r 2 R. Then

r � (a � s) = a � (r s) 2 (a)

since multiplication in R is commutative and associative. So (a) is closed under multiplication by
R.

It follows that (a) � R is an ideal.

3. More generally: Let S � R be an arbitrary non-empty subset. Define

(S) := fr1 � s1 � : : : � rn � � � sn : s1; : : : ; sn 2 Sg

(We often denote this by (S) too.)

Claim: (S) � R is an ideal.

Proof: Exercise. Very similar to the proof from example (2).
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Note: When S = fag, (S) = (a). In particular, (0) = f0g, the zero ideal.

4. R ' H:

Claim: All ideals in H are principal.

Proof: Let I � H be an ideal.

� If I = (u), we are done.
� If I 6= (u), let 0 6= a 2 I be a non-zero element with minimal norm. Let b 2 I be any element. By

the division algorithm, there is some k 2 H satisfying: r = b � ka and jr j < jaj.
– Since I is closed under subtraction and multiplication by H, r = b � ka 2 I.
– Since jaj is minimal among all non-zero elements of I and since r 2 I satisfies jr j < jaj, it

follows that r = 0. Thus, b = k � a 2 (a).

Thus, I � (a).
On the other hand, since a 2 I and I is closed under multiplication by H, it follows that (a) � I.
Thus, (a) � I � (a)) I = (a) is principal.

In particular, let a; b 2 Z. Since all ideals of Z are principal, the ideal

(a; b) = fxa + yb : x; y 2 Zg

must equal (d) for some d 2 Z. d is a greatest common divisor of a and b.

The Extended Euclidean Algorithm finds the generator for (a; b) explicitly.

Exercise: For integers a1; : : : ; an 2 Z, explain how to use the Extended Euclidean Algorithm to explicitly
find d 2 Z for which (a1; : : : ; an) = (d).

15.1 Multivariate Polynomial Rings
Let R be a commutative ring with 1.

Definition 69

R[x1; : : : ; xn] :=

formal expressions
∑
�I2Nn

c�Ix
�I : c�I 2 R for all �I; c�I 6= 0 for all but finitely many �I 2 Nn


For �I = (i1; : : : ; in) � Nn, x �I is the monomial

x i11 : : : x inn

Define addition and multiplication by:
� Addition: ∑

�I

c�Ix
�I +
∑
�I

c 0�Ix
�I :=

∑
�I

(c�I + c 0�I) � x
�I
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� Multiplication: ∑
�I

c�Ix
�I

∑
�J

d �Jx
�J

 :=
∑
�K

 ∑
�I+ �J= �K

c�Id �J

 x
�K

Example: In Z[x; y ](
3x + 4xy + 5y2

)
+
(
7x3 + 8xy + 13y2

)
= 3x + 7x3 + 12xy + 18y2

(3x + 4y) � (5xy + 6x2y3
)
= 15x2y + 18x3y3 + 20xy2 + 24x2y4

16 February 17, 2025

16.1 Polynomial Rings
Recall: (Multivariate) polynomial ring R[x1; : : : ; xn]

R[x1; : : : ; xn] :=

{∑
I

cIx
I : cI 2 R; I 2 Nn such that cI = 0 for all but finitely many I

}

(x1; : : : ; xn)
(i ;j;:::;i ;n)

16.2 Addition

�
(∑

I

cIx
I

)
+

(∑
I

dIx
I

)
=
∑
I

(cI + dI)x
I

16.3 Multiplication (∑
I

cIx
I

)
�
(∑

I

dIx
I

)
=
∑
k

∑
IjIk

cIdI

 xk

16.4 Examples
0 : (cI = 0 for all I 2 Nn)

1

1
:

cI =
0 if I 6= (0; : : : ; 0)

1 if I = (0; : : : ; 0)



16.5 Exercise
R[x1; : : : ; xn] is a commutative ring with 1.
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Lemma 70
If R is an integral domain, R(x) is an integral domain.

Proof. Suppose a; b 2 R(x) with a; b 6= 0. Then

a = a0 + � � �+ ajx
j ; aj 6= 0

b = b0 + � � �+ bkx
k ; bk 6= 0

a � b = � � �+ ajbkx
j+k

Since R is a domain and aj ; bk 6= 0, the leading coefficient ajbk of a � b is 6= 0. Therefore, a � b 6= 0.
It follows that R(x) is an integral domain.

16.6 Corollary
Let R be an integral domain. Then R(x1; : : : ; xn) is an integral domain too.

16.6.1 Proof

Since R(x1; : : : ; xn) = (R(x1; : : : ; xn�1))(xn), this follows from the above Lemma by induction on n.

16.7 Ideals in C[x, y]

16.8 Non-principal ideals
Not all ideals in C[x; y ] are principal!

For example, I = (x; y).

16.8.1 Proposition

(x; y) 2 C[x; y ] is not a principal ideal.

16.8.2 Proof

Suppose (x; y) = (p) for some p 2 C[x; y ]. Then x = � � p for some �; � 2 C[x; y ].

y = � � p

16.8.3 Lemma

For x = � � p, either � or p is a (non-zero) constant.

p = d0(y) + d1(y) � x + : : :+ dk(y)x
k ; di 2 C[y ]
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� � p = c0(y)d0(y) + [c1(y)d0(y) + c0(y)d1(y)]x + : : :

Since � � p = x ,

c0(y)d0(y) = 0

c1(y)d0(y) + c0(y)d1(y) = 0

Since C[y ] is a domain, either c0 = 0 or d0 = 0.
Suppose c0 = 0. Then � is a multiple of x .
Say � = x � �x for some �x 2 C[x; y ].
Then x � �x � p = x

) x(�x � p � 1) = 0

) �x � p � 1 = 0 sinceC[x; y ] is a domain
) �x � p = 1

But C[x; y ]� = non-zero constant polynomials.

16.8.4 Exercise

Prove that C[x; y ]� = C�.

) p = (non-zero constant) and� = x � p

16.8.5 Symmetrically

If d0 = 0, then � = (non-zero constant) and p = x � �.
- If p = non-zero constant, then

(x; y) 6= C[x; y ] = (p); e.g. 1 2 C[x; y ] but 1 =2 (x; y):

- If p is non-zero constant, the above lemma proves that

p =
x

non-zero constant� or p =
y

non-zero constant�

Cannot both hold simultaneously. It follows that (x; y) is not principal.

16.9 Geometric Perspective on Ideals in C[x, y]
There are natural associations:

ideals inC[x; y ] ! subsets ofC2

I 7�! V (I) := fs 2 C2 : f (s) = 0 for all f 2 Ig

51



�(S) ! S

�(S) := ff 2 C[x; y ] : f (s) = 0 for all s 2 Sg
Then: (Hilbert’s Nullstellensatz)
The above maps V; I induce bijections

radical ideals
� C[x; y ]  ! algebraic subsets

ofC2

I 7�! V (I)

I(S) ! S

16.10 Definition
An ideal I � C[x; y ] is radical if

I = �I := ff 2 C[x; y ] : f n 2 �I for some integer n � 1g

16.11 Definition
A subset S � C2 is algebraic if it is the common zero set of some collection of polynomials in C[x; y ].

16.12 Note
”Nullstellensatz” is German, translating to ”Theorem of zeros” in English. It is a deep and important result,
lying at the beginnings of algebraic geometry, a mathematical discipline which brings geometric ideas to bear
on algebra and vice versa.

This gives an intuitive perspective on why (x; y) � C[x; y ] is not a principal ideal.
- V ((x; y)) = f0; 0g � C2, a single point. - V ((p)) = fs 2 C2 : p(s) = 0g.
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17.1 Motivation
The theory of ideals in Z is straightforward ultimately because of the existence of a division algorithm:

Let a; b 2 Z; a 6= 0. There exists k 2 Z for which:

r = b � k � a satisfies jr j < jaj
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The absolute value function

j � j : Z �! N = f0; 1; 2; : : :g
is a useful measure of complexity of integers. Abstractly, any function

c : Z �! N

satisfying c(n) = 0, n = 0

- For every a; b 2 Z; a 6= 0, there is some k 2 Z for which r = b � k � a satisfies:

c(r) < c(a)

could be used as the basis for a (terminating) division algorithm/Euclidean algorithm.
Polynomial rings F [x ] admit such a complexity function which can be used as the basis for a division

algorithm/Euclidean algorithm.
Definition: Let p = c0 + c1x + � � �+ cdx

d 2 F [x ] with cd 6= 0. The degree of p is defined to be d .

deg(p) := maxfk : ck 6= 0g
We define deg(0) = �1. Degree is analogous to log j � j:

deg() log j � j
Then, (Division algorithm in F [x ]) Let a; b 2 F [x ], the polynomial ring in 1-variable over the field F .

Suppose a 6= 0. Then there is some q 2 F [x ] satisfying:

deg(r := b � q � a) � deg(a)

Note: In the sense of the above motivation, 2 deg(�) is a complexity function for the division algorithm.
19. Suppose the leading coefficient of a equals 1, i.e., a is monic.
If a has leading coefficient c 6= 0 missed, replace a by a0 = a

c
. If we find k 2 F [x ] satisfying

deg(b � k � a0) � deg(a0) = deg(a);

then

deg(b � (k � c︸︷︷︸
c

) � a) < deg(a)

fulfilling the requirement of the theorem statement.
Suppose also that deg(b) � deg(a).{

If deg(b) < deg(a);

b = 0 � a + b fulfills the division algorithm requirements.

We recursively construct a sequence of polynomials
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b(0) = b; b(1); b(2); : : : ; b(n) =: r

restricting the property that
- b(0) = b - b(i+1) = b(i)�ki �a for some ki 2 F [x ] - deg(b(i+1)) < deg(b(i)) for all i . - deg(b(n)) < deg(a).
Then r = b(n)

= b(n�1) + kn�1 � a
= b(n�2) + kn�2 � a + kn�1 � a

=
...

= b(0) + k1 � a + k2 � a + � � �+ kn � a
= b + k � a

where k = k1 + k2 + � � �+ kn 2 F [x ] and deg(r) = deg(b(n)) � deg(a).
Let a = c0 + � � �+ cdx

d .
! Begin with b(0) = b.
! Given b(i) with deg(b(i)) � deg(a)

- Suppose b(i) = d0 + d1x + � � �+ dkx
k with dk 6= 0

(so deg(b) � deg(a) = d)

- Let ki = dkx
k�d .

b(i+1) = b(i) � ki � a
Note: ki � a = dkx

k�d(c0 + � � �+ cdx
d)

= lower order + dkx
k

which has the same leading monomial as b(i). These leading monomials cancel upon taking the difference:

deg(b(i+1)) = deg(b(i) � ki � a)
< deg(b(i))

- If deg(b(i+1)) < deg(a), stop.
Otherwise, continue this procedure.
This procedure must stop at some point, say at i + 1 = n, since deg(b(n)) > deg(b(n)) � : : : is a strictly

decreasing sequence of non-negative integers. b(n); b(n); : : : ; b(n) is thus the desired sequence.
Remark: The need to divide by the leading coefficient of a - as the parenthetical remark in the latter

paragraph - is the only reason the division algorithm does not apply in R[x ] for more general rings R. The
latter paragraph does show, however, that for any b 2 R[x ] and any a 2 R[x ] whose leading coefficient lies in
R�, we can fulfill the statement of the division algorithm, i.e., there exists q 2 R[x ] for which r := b � q � a
satisfies deg(r) < deg(a).
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17.2 Example
(i) b = x3 + 2x2 + 3x + 4; a = x2 + 5x + 6; b(0) = b = x3 + 2x2 + 3x + 4

b(1) = b(0) � x � a

= x3 + 2x2 + 3x + 4

� (x3 + 5x2 + 6x)

= �3x2 � 3x + 4

b(2) = b(1) � (�3) � a
= �3x2 � 3x + 4

+ 3(x2 + 5x + 6)

= 12x + 22

) b = (x + (�3)) � a + 12x + 22

Consistency check:
b = q � a + 12x + 22

! a has roots �2;�3.

RHS(x)(�2) = 12(�2) + 22 = �2
LHS(x)(�3) = 12(�3) + 22 = �14

By direct computation:

LHS(x)(�2) = b(�2) = (�2)3 + 2(�2)2 + 3(�2) + 4 = �2
LHS(x)(�3) = b(�3) = (�3)3 + 2(�3)2 + 3(�3) + 4 = �14
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