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1 January 6, 2025
STAT 4202 will rely a lot on STAT 4201. So we need to have a pretty good understanding of those concepts.

1.1 Review of Probability Theory

Definition 1
The Sample Space, denoted by S, is the set of all outcomes from an experiment.

Definition 2
An Event, usually denoted by a capital letter such as A or B, is a subset of the Sample Space.

The probability function
� P (A) � 0

� P (S) = 1

� For disjoint sets A1, A2, � � � , An:

P

(
n∪

i=1

Ai

)
=

n∑
i=1

P (Ai)

If an event A is a subset of another event B, then the probability of A is less than or equal to the probability
of event B. That is to say, if A � B, then P (A) � P (B)

The complement of an event A, denoted by Ac , has a probability equal to one minus the probability of
the event A. That is,

P (Ac) = 1� P (A)

A partition of a sample space S is an exhaustive, non-overlapping collection of events A1, A2, � � � , An that
is exhaustive and mutually exclusive:

n∪
i=1

Ai = S
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and
Ai \ Aj = ; 8i 6= j

For any partition, we have
n∑

i=1

P (Ai) = 1

Two events A and B are independent if the outcome of one doesn’t affect the likelihood of the occurrence
of the other. For two independent events, we have

P (A \ B) = P (A)P (B)

The conditional probability of A given B is given by

P (AjB) = P (A \ B)

P (B)

Lemma 3
Note that if A and B are independent, then

P (AjB) = P (A \ B)

P (B)

=
P (A)P (B)

P (B)

= P (A)

Corollary 4
If A and B are independent, then P (AjB) = P (A) and P (BjA) = P (B)

1.2 Random Variables

Definition 5
A random variable is a function that takes outcomes from the sample space S to the real numbers R.
That is, a random variable is a function X : S ! R.

We then use a probability mass function (pmf) in the discrete case or a probability density function (pdf)
in the continuous case:

pmf: fX(x) = P (X = x) when X is discrete

pdf:
∫ b

a
fX(x)dx = P (a � X � b) when X is continuous
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The cumulative distribution function (cdf) gives the probability of observing a value less than or equal to
a given value x :

FX(x) = P (X � x)

When X is a continuous random variable, the pdf is the derivative of the cdf:

fX(x) = F 0X(x)

1.3 Expected Value and Variance
For random variable X, the expected value is denoted by E (X) and is given by:

E(X) =


∑

x xfX(x) if X is discrete∫1
�1 xfX(x)dx if X is continuous

The variance of a random variable X is denoted by Var(X) and is given by:

Var(X) = E
[
(X � E(X))2

]

1.4 Covariance
The covariance of two random variables X and Y is denoted by:

Cov(X; Y ) = E [(X � E(X))(Y � E(Y ))]

If two random variables X and Y are independent, then

P (X 2 A; Y 2 B) = P (X 2 A)P (Y 2 B)

So, we will be using these formulas to estimate the mean and the variance throughout the semester.

2 January 8, 2025

2.1 Statistical Models
In statistics, we often model data X1; X2; � � � ; Xn as a random sample from a population. We assume that the
data are independent and identically distributed (iid) random variables. The goal is to estimate the parameters
of the population distribution.

Definition 6
A parameter of a distribution are values that describe a certain characteristic of the given distribution.
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Some examples of parameters include:
� The mean height of all OSU incoming freshmen.

� The proportion of registered voters that voted for a particular candidate.

� The standard deviation of waiting times for all customers shopping at a store during a week.

Fact 7
If X1; X2; : : : ; Xn

i id� fX(x) then � = E(Xi) is a parameter, which is the mean of the distribution. The
variance is also a parameter: �2 = E[(X � �)2]

Example 8
Suppose we are examining the efficacy difference between a newly developed drug and an existing drug.
We look at the differences, �i , from a series of n comparative samples. Note that these will all come from
some distribution:

�1;�2; : : : ;�n;
i id

f (x)

Fact 9
Here the independed is a really important to look for we will look thorogh that through the semester.

For a parametric model
ffg(x)�2Rg

Which is indexed by a vector � of parameters.

Example 10
Suppose we wanted to estimate the height and weight of all incoming students at Ohio State. We could
take a random sample of n of the incoming students and observe the height (H) and weight (W ) of each
student, giving the following sample data:

(H1;W1); (H2;W2); : : : ; (Hn;Wn)

We can then consider the following model:
N(�;�)

3 January 8, 2025
We went over the Recitation Logistics and Quiz 1.

4 January 10, 2025 (In-Person)
We wanted to check how to get estimators. We will do the backwards this week for.

4



4.1 Unbiased Estimator

Definition 11
An estimator (̂�)

Definition 12
An unbiased estimator is an estimator that is equal to the parameter it estimates. That is, if �̂ is an
unbiased estimator of �, then E(�̂) = �.

4.1.1 Interval Estimation

Definition 13
A confidence interval is an interval estimate for a parameter � that provides a range of values within
which the parameter is expected to lie with a certain degree of confidence. If �̂1 and �̂2 are values of the
random variables �̂1 and �̂2 such that

P (�̂1 < � < �̂2) = 1� �

for some specified probability 1� �, we refer to the interval

�̂1 < � < �̂2

as a (1��)100% confidence interval for �. The probability 1�� is called the degree of confidence, and
the endpoints of the interval are called the lower and upper confidence limits.

Theorem 14
If �X, the mean of a random sample of size n from a normal population with the known variance �2, is to
be used as an estimator of the mean of the population, the probability is 1� � that the error will be less
than z�=2��p

n
.

Theorem 15
Let X1; X2; : : : ; Xn be a random sample from a normal population with mean � and variance �2. If �X is
the sample mean, then

Z =
�X � �

�=
p
n
� N(0; 1)

Then the interval
�X � z�=2 � �p

n
< � < �X +

z�=2 � �p
n

is a (1� �)100% confidence interval for the mean of the population.
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Theorem 16
If �X and s are the values of the mean and the standard deviation of a random sample of size n from a
normal population, then

�X � t�=2;n�1 �
sp
n
< � < �X + t�=2;n�1 �

sp
n

is a (1� �)100% confidence interval for the mean of the population.

Fact 17
When n < 30, the t-distribution should be used instead of the normal distribution to account for the
increased variability in the estimate of the standard deviation.

Theorem 18
If x1 and x2 are the values of the means of independent random samples of sizes n1 and n2 from normal
populations with the known variances �21 and �22, then

(x1 � x2)� z�=2 �
√
�2
1

n1
+
�2
2

n2
< �1 � �2 < (x1 � x2) + z�=2 �

√
�2
1

n1
+
�2
2

n2

is a (1� �)100% confidence interval for the difference between the two population means.

Theorem 19
If x1, x2, s1, and s2 are the values of the means and the standard deviations of independent random
samples of sizes n1 and n2 from normal populations with equal variances, then

(x1 � x2)� t�=2;n1+n2�2 � sp
√

1

n1
+

1

n2
< �1 � �2 < (x1 � x2) + t�=2;n1+n2�2 � sp

√
1

n1
+

1

n2

is a (1� �)100% confidence interval for the difference between the two population means.

5 February 21, 2025

5.1 Hypothesis Testing

Definition 20 (Statistical Hypothesis)
A Statistical Hypothesis is an assertion or conjecture about the distribution of one or more random
variables. For example, the claim that �2 � �1
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Definition 21 (Null Hypothesis)
The hypothesis that we would like to provide evidence against is called the null hypothesis and is denoted
by H0.

Example 22
In the drug example, the null hypothesis is

H0 : �2 � �1 (or �1 = �2) (1)

The hypothesis mu2 > �1 is called the alternative hypothesis and is denoted by Ha or H1.

Definition 23
The rejection region is also referred as the critical region. The size of the critical region is also known as
the Level of Significance of the test, and the level of significance is denoted by the probability of type I
error, or by �.

Example 24
Suppose we wish to test the hypotheses that

H0 : � = 0:9 vs H1 : � = 0:6

For a binomial distribution with n = 20 samples, with the random variable X defined as the count of the
number of successes. The rejection region for this test is when X � 14.

� What is the significance level, �, for this test?

� What is the probability of a type II error, �?

� What happens to the values of � and � when we change the rejection region to be X � 15?

� What happens to the values of � and � when we change the rejection region to be X � 13?

Example 25
Suppose we take a random sample X1; X2; X3; : : : ; Xn � N(�; 1) and we wish to test the hypotheses

H0 : � = �0 vs H1 : � 6= �1

with �1 > �0. Our test procedure is to reject H0 if �X > k for some real number k . Find the value of k
such that the probability of a type I error is 0:05.
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Example 26
Continuation from the previous example

If �0 = 10 and �1 = 11, determine the minimal sample size so that � � 0:06 using the test with

k = �0 +
1:645p

n

Definition 27
The Power of a Test, given 1 � �, is the probability that H0 is rejected given that H0 is false. In our
example, 1� � is the power of the test, � = �1 for

H0 : � = �0 vs H1 : � = �1

6 February 28, 2025

6.1 Tests of Significance
A statistical test, which specifies a simple hypothesis, the size of the critical region �, and a composite
alternative hypothesis is called a Test of Significance. For such tests, � is referred to as the level of significance.

Example 28
Let X1; X2; : : : ; Xn � N(�; �2) where �2 is known. A two-tailed test for

H0 : � = �0 vs Ha : � 6= �0

is

Example 29
A one-tailed test for

H0 : � = �0 vs Ha : � < �0

is to reject H0 if

6.1.1 Four Steps to Hypothesis Testing

1. Formulate H0 and Ha and specify �.

2. Specify the test statistic and define the critical region of size �.

3. Determine the value of the (observed) test statistic from the data.

4. Check whether the value of the test statistic falls in the rejection region and accordingly, reject or fail
to reject H0.
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Example 30
Let X1; X2; : : : ; Xn � N(�; �2) where �2 is known. Consider the hypotheses

H0 : � = �0 vs Ha : � 6= �0

1. Formulate H0 and Ha and specify �.

2. Specify the test statistic and define the critical region of size �.

3. Determine the value of the (observed) test statistic from the data.

4. Check whether the value of the test statistic falls in the rejection region and accordingly, reject or
fail to reject H0.

6.2 P-Values
It is oftentimes more informative to compute the so-called p-value of a test and compare it to � to decide
whether to reject H0 or not.

Example 31
Consider again the hypotheses

H0 : � = �0 vs Ha : � 6= �0

Test Statistic: Z =
�X��0

�=
p
n

Rejection Region: jZj � z�=2 p-value = �� so that

In general, we have

p-value =


P (Z � z� j H0) if Ha : � > �0

P (Z � z� j H0) if Ha : � < �0

2P (Z � jz�j j H0) if Ha : � 6= �0

where Z is the test statistic and z� is the observed test statistic.
Corresponding to an observed value of a test statistic, the p-value is the lowest level of significance at

which the null hypothesis could have been rejected.
By definition of a p-value, we can show that if a p-value � �, then we would reject H0 at the level of

significance �.

6.2.1 Alternate Testing Procedure

Based on this, we can modify steps 2-4 to be

1. Formulate H0 and Ha and specify �.

2. Specify the test statistic.

3. Determine the value of the (observed) test statistic and the corresponding p-value from the data.

4. Check if p-value � � and accordingly, reject or fail to reject H0.
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6.3 Tests Concerning Means
Suppose we consider the null hypothesis H0 : � = �0 and assume that the population variance, �2, is known.
Let Z =

�X��0

�=
p
n

be the test statistic. Given a level of significance �, the rejection region is

Z � z� if Ha : � > �0

Z � �z� if Ha : � < �0

jZj � z�=2 if Ha : � 6= �0

The p-value is
P (Z � z j Ha : � > �0)

P (Z � �z j Ha : � < �0)

2P (Z � z j Ha : � 6= �0)

where Z =
�X��0

�=
p
n

.

Example 32
Given the following summary statistics

� = 0:16; �X = 8:091; n = 25; � = 0:01

Test the hypotheses
H0 : � = 8 vs Ha : � 6= 8

6.3.1 Another Application

When n � 30, we can replace � by s if � is unknown. In this case, we have

Z =
�X � �0

s=
p
n

� N(0; 1) approximately

Example 33
Given the following summary statistics

�X = 21819; s = 1295; n = 100; � = 0:05

Test the hypotheses
H0 : � = 22000 vs Ha : � < 22000
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