Stat 4202: Mathematical Statistics II

Lecturer: **Professor Andrew Kerr** Notes by: Farhan Sadeek

Spring 2025

1 January 6, 2025

STAT 4202 will rely a lot on STAT 4201. So we need to have a pretty good understanding of those concepts.

1.1 Review of Probability Theory

Definition 1

The Sample Space, denoted by S, is the set of all outcomes from an experiment.

Definition 2

An **Event**, usually denoted by a capital letter such as A or B, is a subset of the Sample Space.

The probability function

- $P(A) \geq 0$
- $P(\mathcal{S}) = 1$
- For disjoint sets A_1, A_2, \cdots, A_n :

$$P\left(\bigcup_{i=1}^{n}A_{i}\right)=\sum_{i=1}^{n}P(A_{i})$$

If an event A is a subset of another event B, then the probability of A is less than or equal to the probability of event B. That is to say, if $A \subseteq B$, then $P(A) \leq P(B)$

The complement of an event A, denoted by A^c , has a probability equal to one minus the probability of the event A. That is,

$$P(A^c) = 1 - P(A)$$

A partition of a sample space S is an exhaustive, non-overlapping collection of events A_1, A_2, \dots, A_n that is exhaustive and mutually exclusive:

$$\bigcup_{i=1}^n A_i = S$$

and

$$A_i \cap A_j = \emptyset \quad \forall i \neq j$$

For any partition, we have

$$\sum_{i=1}^n P(A_i) = 1$$

Two events A and B are **independent** if the outcome of one doesn't affect the likelihood of the occurrence of the other. For two independent events, we have

$$P(A \cap B) = P(A)P(B)$$

The **conditional probability** of *A* given *B* is given by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Lemma 3

Note that if A and B are independent, then

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{P(A)P(B)}{P(B)}$$
$$= P(A)$$

Corollary 4

If A and B are independent, then P(A|B) = P(A) and P(B|A) = P(B)

1.2 Random Variables

Definition 5

A random variable is a function that takes outcomes from the sample space S to the real numbers \mathbb{R} . That is, a random variable is a function $X : S \to \mathbb{R}$.

We then use a probability mass function (pmf) in the discrete case or a probability density function (pdf) in the continuous case:

pmf:

 $f_X(x) = P(X = x)$ when X is discrete $\int_{a}^{b} f_{X}(x) dx = P(a \le X \le b)$

pdf:

when X is continuous

The cumulative distribution function (cdf) gives the probability of observing a value less than or equal to a given value x:

$$F_X(x) = P(X \le x)$$

When X is a continuous random variable, the pdf is the derivative of the cdf:

$$f_X(x) = F'_X(x)$$

1.3 Expected Value and Variance

For random variable X, the **expected value** is denoted by E(X) and is given by:

$$E(X) = \begin{cases} \sum_{X} x f_X(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} x f_X(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

The variance of a random variable X is denoted by Var(X) and is given by:

$$Var(X) = E\left[\left(X - E(X)\right)^2\right]$$

1.4 Covariance

The **covariance** of two random variables *X* and *Y* is denoted by:

$$Cov(X,Y) = E\left[(X - E(X))(Y - E(Y))\right]$$

If two random variables X and Y are independent, then

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

So, we will be using these formulas to estimate the mean and the variance throughout the semester.

2 January 8, 2025

2.1 Statistical Models

In statistics, we often model data X_1, X_2, \dots, X_n as a random sample from a population. We assume that the data are independent and identically distributed (iid) random variables. The goal is to estimate the parameters of the population distribution.

Definition 6

A parameter of a distribution are values that describe a certain characteristic of the given distribution.

Some examples of parameters include:

- The mean height of **all** OSU incoming freshmen.
- The proportion of registered voters that voted for a particular candidate.
- The standard deviation of waiting times for all customers shopping at a store during a week.

Fact 7

If $X_1, X_2, \ldots, X_n \stackrel{iid}{\approx} f_X(x)$ then $\mu = E(X_i)$ is a parameter, which is the mean of the distribution. The variance is also a parameter: $\sigma^2 = E[(X - \mu)^2]$

Example 8

Suppose we are examining the efficacy difference between a newly developed drug and an existing drug. We look at the differences, Δi , from a series of *n* comparative samples. Note that these will all come from some distribution:

$$\Delta_1, \Delta_2, \ldots, \Delta_n, \stackrel{iid}{f}(x)$$

Fact 9

Here the independed is a really important to look for we will look thorogh that through the semester.

For a parametric model

 $\{f_g(x)_{\theta\in\mathbb{R}}\}$

Which is indexed by a vector θ of parameters.

Example 10

Suppose we wanted to estimate the height and weight of all incoming students at Ohio State. We could take a random sample of n of the incoming students and observe the height (H) and weight (W) of each student, giving the following sample data:

 $(H_1, W_1), (H_2, W_2), \dots, (H_n, W_n)$

We can then consider the following model:

 $N(\mu, \Sigma)$

3 January 8, 2025

We went over the **Recitation Logistics** and **Quiz 1**.

4 January 10, 2025 (In-Person)

We wanted to check how to get estimators. We will do the backwards this week for.

4.1 Unbiased Estimator

Definition 11

An estimator $\hat{(}\theta)$

Definition 12

An **unbiased estimator** is an estimator that is equal to the parameter it estimates. That is, if $\hat{\theta}$ is an unbiased estimator of θ , then $E(\hat{\theta}) = \theta$.

4.1.1 Interval Estimation

Definition 13

A confidence interval is an interval estimate for a parameter θ that provides a range of values within which the parameter is expected to lie with a certain degree of confidence. If $\hat{\theta}_1$ and $\hat{\theta}_2$ are values of the random variables $\hat{\theta}_1$ and $\hat{\theta}_2$ such that

$$P(\hat{\theta}_1 < \theta < \hat{\theta}_2) = 1 - \alpha$$

for some specified probability 1-lpha, we refer to the interval

$$\hat{\theta}_1 < \theta < \hat{\theta}_2$$

as a $(1 - \alpha)100\%$ confidence interval for θ . The probability $1 - \alpha$ is called the degree of confidence, and the endpoints of the interval are called the lower and upper confidence limits.

Theorem 14

If \bar{X} , the mean of a random sample of size *n* from a normal population with the known variance σ^2 , is to be used as an estimator of the mean of the population, the probability is $1 - \alpha$ that the error will be less than $\frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}$.

Theorem 15

Let X_1, X_2, \ldots, X_n be a random sample from a normal population with mean μ and variance σ^2 . If \bar{X} is the sample mean, then

$$Z = \frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Then the interval

$$ar{X} - rac{z_{lpha/2} \cdot \sigma}{\sqrt{n}} < \mu < ar{X} + rac{z_{lpha/2} \cdot \sigma}{\sqrt{n}}$$

is a $(1-\alpha)100\%$ confidence interval for the mean of the population.

Theorem 16

If \overline{X} and s are the values of the mean and the standard deviation of a random sample of size n from a normal population, then

$$\bar{X} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}$$

is a $(1-\alpha)100\%$ confidence interval for the mean of the population.

Fact 17

When n < 30, the *t*-distribution should be used instead of the normal distribution to account for the increased variability in the estimate of the standard deviation.

Theorem 18

If x_1 and x_2 are the values of the means of independent random samples of sizes n_1 and n_2 from normal populations with the known variances σ_1^2 and σ_2^2 , then

$$(x_1 - x_2) - z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < (x_1 - x_2) + z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

is a $(1 - \alpha)100\%$ confidence interval for the difference between the two population means.

Theorem 19

If x_1 , x_2 , s_1 , and s_2 are the values of the means and the standard deviations of independent random samples of sizes n_1 and n_2 from normal populations with equal variances, then

$$(x_1 - x_2) - t_{\alpha/2, n_1 + n_2 - 2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 < (x_1 - x_2) + t_{\alpha/2, n_1 + n_2 - 2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

is a $(1 - \alpha)100\%$ confidence interval for the difference between the two population means.

5 February 21, 2025

5.1 Hypothesis Testing

Definition 20 (Statistical Hypothesis)

A Statistical Hypothesis is an assertion or conjecture about the distribution of one or more random variables. For example, the claim that $\mu_2 \ge \mu_1$

Definition 21 (Null Hypothesis)

The hypothesis that we would like to provide evidence against is called the **null hypothesis** and is denoted by H_0 .

Example 22

In the drug example, the null hypothesis is

$$H_0: \mu_2 \ge \mu_1 \text{ (or } \mu_1 = \mu_2) \tag{1}$$

The hypothesis $mu_2 > \mu_1$ is called the **alternative hypothesis** and is denoted by H_a or H_1 .

Definition 23

The rejection region is also referred as the **critical region**. The size of the critical region is also known as the **Level of Significance** of the test, and the level of significance is denoted by the probability of type I error, or by α .

Example 24

Suppose we wish to test the hypotheses that

$$H_0: \theta = 0.9 \text{ vs } H_1: \theta = 0.6$$

For a binomial distribution with n = 20 samples, with the random variable X defined as the count of the number of successes. The rejection region for this test is when $X \le 14$.

- What is the significance level, α , for this test?
- What is the probability of a type II error, β ?
- What happens to the values of α and β when we change the rejection region to be $X \leq 15$?
- What happens to the values of α and β when we change the rejection region to be $X \leq 13$?

Example 25

Suppose we take a random sample $X_1, X_2, X_3, \ldots, X_n \sim N(\mu, 1)$ and we wish to test the hypotheses

$$H_0: \mu=\mu_0$$
 vs $H_1: \mu
eq\mu_1$

with $\mu_1 > \mu_0$. Our test procedure is to reject H_0 if $\bar{X} > k$ for some real number k. Find the value of k such that the probability of a type I error is 0.05.

Example 26

Continuation from the previous example

If $\mu_0 = 10$ and $\mu_1 = 11$, determine the minimal sample size so that $\beta \le 0.06$ using the test with

$$k = \mu_0 + \frac{1.645}{\sqrt{n}}$$

Definition 27

The **Power of a Test**, given $1 - \beta$, is the probability that H_0 is rejected given that H_0 is false. In our example, $1 - \beta$ is the power of the test, $\theta = \theta_1$ for

$$H_0: \theta = \theta_0 \text{ vs } H_1: \theta = \theta_1$$

6 February 28, 2025

6.1 Tests of Significance

A statistical test, which specifies a simple hypothesis, the size of the critical region α , and a composite alternative hypothesis is called a Test of Significance. For such tests, α is referred to as the level of significance.

Example 28

Let $X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2)$ where σ^2 is known. A two-tailed test for

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu \neq \mu_0$

is

Example 29

A one-tailed test for

 $H_0: \mu = \mu_0$ vs $H_a: \mu < \mu_0$

is to reject H_0 if

6.1.1 Four Steps to Hypothesis Testing

- 1. Formulate H_0 and H_a and specify α .
- 2. Specify the test statistic and define the critical region of size α .
- 3. Determine the value of the (observed) test statistic from the data.
- 4. Check whether the value of the test statistic falls in the rejection region and accordingly, reject or fail to reject H_0 .

Example 30

Let $X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2)$ where σ^2 is known. Consider the hypotheses

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu \neq \mu_0$

- 1. Formulate H_0 and H_a and specify α .
- 2. Specify the test statistic and define the critical region of size α .
- 3. Determine the value of the (observed) test statistic from the data.
- 4. Check whether the value of the test statistic falls in the rejection region and accordingly, reject or fail to reject H_0 .

6.2 P-Values

It is oftentimes more informative to compute the so-called p-value of a test and compare it to α to decide whether to reject H_0 or not.

Example 31

Consider again the hypotheses

 $H_0: \mu = \mu_0$ vs $H_a: \mu \neq \mu_0$

Test Statistic: $Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$ Rejection Region: $|Z| \ge z_{\alpha/2}$ p-value $= \alpha^*$ so that

In general, we have

$$p\text{-value} = \begin{cases} P(Z \ge z^* \mid H_0) & \text{if } H_a : \mu > \mu_0 \\ P(Z \le z^* \mid H_0) & \text{if } H_a : \mu < \mu_0 \\ 2P(Z \ge |z^*| \mid H_0) & \text{if } H_a : \mu \neq \mu_0 \end{cases}$$

where Z is the test statistic and z^* is the observed test statistic.

Corresponding to an observed value of a test statistic, the p-value is the lowest level of significance at which the null hypothesis could have been rejected.

By definition of a p-value, we can show that if a p-value $\leq \alpha$, then we would reject H_0 at the level of significance α .

6.2.1 Alternate Testing Procedure

Based on this, we can modify steps 2-4 to be

- 1. Formulate H_0 and H_a and specify α .
- 2. Specify the test statistic.
- 3. Determine the value of the (observed) test statistic and the corresponding p-value from the data.
- 4. Check if p-value $\leq \alpha$ and accordingly, reject or fail to reject H_0 .

6.3 Tests Concerning Means

Suppose we consider the null hypothesis $H_0: \mu = \mu_0$ and assume that the population variance, σ^2 , is known. Let $Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$ be the test statistic. Given a level of significance α , the rejection region is

 $Z \ge z_{\alpha} \quad \text{if } H_a : \mu > \mu_0$ $Z \le -z_{\alpha} \quad \text{if } H_a : \mu < \mu_0$ $|Z| \ge z_{\alpha/2} \quad \text{if } H_a : \mu \neq \mu_0$

The p-value is

 $P(Z \ge z \mid H_a : \mu > \mu_0)$ $P(Z \le -z \mid H_a : \mu < \mu_0)$ $2P(Z \ge z \mid H_a : \mu \neq \mu_0)$

where $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$.

Example 32

Given the following summary statistics

 $\sigma = 0.16$, $\bar{X} = 8.091$, n = 25, $\alpha = 0.01$

Test the hypotheses

$$H_0: \mu = 8$$
 vs $H_a: \mu \neq 8$

6.3.1 Another Application

When $n \ge 30$, we can replace σ by s if σ is unknown. In this case, we have

$$Z = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} \sim N(0, 1) \text{ approximately}$$

Example 33

Given the following summary statistics

$$\bar{X} = 21819$$
, $s = 1295$, $n = 100$, $\alpha = 0.05$

Test the hypotheses

$$H_0: \mu = 22000$$
 vs $H_a: \mu < 22000$