
Algorithms Notes

Farhan Sadeek

Last Updated: December 18, 2025

This is the place where I will keep track of the all the algorithms that I learnt in my LeetCode and
Competitive Programming journery.

Contents

1 Graph Algorithms 3
1 Breadth-First Search (BFS) . 3
2 Depth-First Search (DFS) . 4
3 Topological Sorting . 4

2 Dynamic Programming 5
1 Fibonacci Sequence . 6
2 Kadane’s Algorithm . 6
3 0/1 Knapsack Problem . 7
4 Unbounded Knapsack Problem . 8
5 Longest Common Subsequence (LCS) . 8
6 Longest Increasing Subsequence (LIS) . 9
7 Palindromic Subsequence . 10
8 Edit Distance . 10
9 Subset Sum Problem . 12
10 String Partition . 12
11 Catalan Numbers . 12
12 Matrix Chain Multiplication . 12
13 Count Distinct Ways . 12
14 DP on Grids . 12
15 DP on Trees . 12
16 DP on Graphs . 12
17 Digit DP . 12
18 Bitmasking DP . 12
19 Probability DP . 12
20 State Machine DP . 12

1

https://leetcode.com/

3 Tree Algorithms 13
1 Fenwick Tree (Binary Indexed Tree) . 13
2 Segment Tree (Standard) . 15
3 Segment Tree with Lazy Propagation . 17

2

1 Graph Algorithms

1 Breadth-First Search (BFS)

BFS is a traversal algorithm for graphs that explores all neighbors at the present depth prior to moving on
to nodes at the next depth level. It is often used for finding the shortest path in unweighted graphs. Here
is how the algorithm actually works:

1. Start from a given node (the source).

2. Mark the node as visited and enqueue it.

3. While the queue is not empty:

(a) Dequeue a node from the front of the queue.

(b) Process the node (e.g., print or store it).

(c) Enqueue all unvisited neighbors of the node, marking them as visited.

4. Repeat until all reachable nodes are processed.

Here is a simple implementation of BFS in C++:

#include <bits/stdc++.h>

using namespace std;

void bfs(int start, const vector<vector<int>>& adj, vector<bool>& visited) {

queue<int> q;

visited[start] = true;

q.push(start);

while (!q.empty()) {

int node = q.front();

q.pop();

// Process node here (e.g., print or store)

for (int neighbor : adj[node]) {

if (!visited[neighbor]) {

visited[neighbor] = true;

q.push(neighbor);

}

}

}

}

3

2 Depth-First Search (DFS)

DFS is another traversal algorithm for graphs that explores as far as possible along each branch before
backtracking. It can be implemented using recursion or an explicit stack. Here is how the algorithm works:

1. Start from a given node (the source).

2. Mark the node as visited.

3. For each unvisited neighbor, recursively call DFS on the neighbor.

4. Repeat until all reachable nodes are processed.

Here is a simple implementation of DFS in C++:

#include <bits/stdc++.h>

using namespace std;

void dfs(int node, const vector<vector<int>>& adj, vector<bool>& visited) {

visited[node] = true;

// Process node here (e.g., print or store)

for (int neighbor : adj[node]) {

if (!visited[neighbor]) {

dfs(neighbor, adj, visited);

}

}

}

3 Topological Sorting

Topological sorting is a linear ordering of vertices in a directed acyclic graph (DAG) such that for every
directed edge u → v , vertex u comes before vertex v in the ordering. It is often used in scheduling problems
and can be implemented using either DFS or Kahn’s algorithm. Here is how the algorithm works:

1. Compute the in-degree of each vertex.

2. Initialize a queue with all vertices that have in-degree 0.

3. While the queue is not empty:

(a) Dequeue a vertex from the front of the queue.

(b) Add the vertex to the topological order.

(c) For each neighbor of the vertex, decrease its in-degree by 1. If the in-degree becomes 0, enqueue
the neighbor.

4. If the topological order contains all vertices, return it; otherwise, the graph has a cycle.

Here is a simple implementation of topological sorting in C++:

4

#include <bits/stdc++.h>

using namespace std;

vector<int> topologicalSort(const vector<vector<int>>& adj, int n) {

vector<int> inDegree(n, 0);

for (const auto& neighbors : adj) {

for (int neighbor : neighbors) {

inDegree[neighbor]++;

}

}

queue<int> q;

for (int i = 0; i < n; i++) {

if (inDegree[i] == 0) {

q.push(i);

}

}

vector<int> topOrder;

while (!q.empty()) {

int node = q.front();

q.pop();

topOrder.push_back(node);

for (int neighbor : adj[node]) {

inDegree[neighbor]--;

if (inDegree[neighbor] == 0) {

q.push(neighbor);

}

}

}

if (topOrder.size() == n) {

return topOrder;

} else {

return {}; // Graph has a cycle

}

}

2 Dynamic Programming

Dynamic Programming (DP) is a method for solving complex problems by breaking them down into simpler
subproblems. It is applicable when the problem can be divided into overlapping subproblems and has optimal
substructure. The key idea is to store the results of subproblems to avoid redundant calculations.

5

1 Fibonacci Sequence

The Fibonacci sequence is a classic example of a problem that can be solved using dynamic programming.
The sequence is defined as follows:

F (n) = F (n − 1) + F (n − 2)

with base cases
F (0) = 0, F (1) = 1

Here is a simple implementation of Fibonacci using dynamic programming in C++:

#include <bits/stdc++.h>

using namespace std;

int fibonacci(int n) {

if (n <= 1) return n;

vector<int> dp(n + 1);

dp[0] = 0;

dp[1] = 1;

for (int i = 2; i <= n; i++) {

dp[i] = dp[i - 1] + dp[i - 2];

}

return dp[n];

}

2 Kadane’s Algorithm

Kadane’s Algorithm is used to find the maximum sum of a contiguous subarray in an array. It works by
iterating through the array and maintaining a running sum of the maximum subarray ending at the current
position. If the running sum becomes negative, it is reset to zero. The maximum sum is updated whenever
a larger sum is found. Here is how the algorithm works:

1. Initialize two variables: max_so_far to negative infinity and current_sum to 0.

2. Iterate through each element in the array:

(a) Add the current element to current_sum.

(b) If current_sum is greater than max_so_far, update max_so_far.

(c) If current_sum becomes negative, reset it to 0.

3. The final value of max_so_far will be the maximum sum of a contiguous subarray.

Here is a simple implementation of Kadane’s Algorithm in C++:

6

#include <bits/stdc++.h>

using namespace std;

int kadane (const vector<int>& arr) {

int max_so_far = INT_MIN;

int current_sum = 0;

for (int num : arr) {

current_sum += num;

if (current_sum > max_so_far) {

max_so_far = current_sum;

}

if (current_sum < 0) {

current_sum = 0;

}

}

return max_so_far;

}

3 0/1 Knapsack Problem

The 0/1 Knapsack problem is a classic optimization problem where you have a set of items, each with a
weight and a value, and you want to maximize the total value in a knapsack of a given capacity. The problem
can be solved using dynamic programming as follows:

1. Create a 2D array dp[i][j] where i is the number of items and j is the capacity of the knapsack.

2. Initialize the first row and column to 0.

3. For each item i and capacity j:

(a) If the weight of the item is less than or equal to j:

dp[i][j] = max(dp[i-1][j], dp[i-1][j - weight[i]] + value[i])

(b) If the weight of the item is greater than j:

dp[i][j] = dp[i-1][j]

4. The maximum value will be found in dp[n][W] where n is the number of items and W is the capacity
of the knapsack.

Here is a simple implementation of the 0/1 Knapsack problem in C++:

7

#include <bits/stdc++.h>

using namespace std;

int knapsack(int W, const vector<int>& weights, const vector<int>& values) {

int n = weights.size();

vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));

for (int i = 1; i <= n; i++) {

for (int j = 0; j <= W; j++) {

if (weights[i - 1] <= j) {

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i -

1]);

}

else {

dp[i][j] = dp[i - 1][j];

}

}

}

return dp[n][W];

}

4 Unbounded Knapsack Problem

5 Longest Common Subsequence (LCS)

The Longest Common Subsequence (LCS) problem is a classic problem in computer science where you want
to find the longest subsequence that is common to two sequences. The problem can be solved using dynamic
programming as follows:

1. Create a 2D array dp[i][j] where i is the length of the first sequence and j is the length of the
second sequence.

2. Initialize the first row and column to 0.

3. For each character in the first sequence and each character in the second sequence:

(a) If the characters match, set dp[i][j] = dp[i-1][j-1] + 1.

(b) If the characters do not match, set dp[i][j] = max(dp[i-1][j], dp[i][j-1]).

4. The length of the longest common subsequence will be found in dp[n][m] where n is the length of
the first sequence and m is the length of the second sequence.

Here is a simple implementation of LCS in C++:

8

#include <bits/stdc++.h>

using namespace std;

int lcs(const string& s1, const string& s2) {

int n = s1.size(), m = s2.size();

vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));

for (int i = 1; i <= n; i++) {

for (int j = 1; j <= m; j++) {

if (s1[i - 1] == s2[j - 1]) {

dp[i][j] = dp[i - 1][j - 1] + 1;

} else {

dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

}

}

}

return dp[n][m];

}

6 Longest Increasing Subsequence (LIS)

The Longest Increasing Subsequence (LIS) problem is a classic problem in computer science where you want
to find the longest subsequence of a given sequence such that all elements of the subsequence are sorted in
increasing order. The problem can be solved using dynamic programming as follows:

1. Create a 1D array dp[i] where i is the length of the input sequence.

2. Initialize all elements of dp to 1, since the minimum length of LIS ending at each element is 1 (the
element itself).

3. For each element in the sequence, compare it with all previous elements:

(a) If the current element is greater than a previous element, update dp[i] to be the maximum of
its current value and dp[j] + 1, where j is the index of the previous element.

4. The length of the longest increasing subsequence will be the maximum value in the dp array.

Here is a simple implementation of LIS in C++:

9

#include <bits/stdc++.h>

using namespace std;

int lis(const vector<int>& arr) {

int n = arr.size();

vector<int> dp(n, 1);

for (int i = 1; i < n; i++) {

for (int j = 0; j < i; j++) {

if (arr[i] > arr[j]) {

dp[i] = max(dp[i], dp[j] + 1);

}

}

}

return *max_element(dp.begin(), dp.end());

}

7 Palindromic Subsequence

8 Edit Distance

Edit Distance, also known as Levenshtein distance, is a measure of how dissimilar two strings are by counting
the minimum number of operations required to transform one string into the other. The allowed operations
are insertion, deletion, and substitution of a single character. The problem can be solved using dynamic
programming as follows:

1. Create a 2D array dp[i][j] where i is the length of the first string and j is the length of the second
string.

2. Initialize the first row and column: dp[i][0] = i for all i, since it takes i deletions to convert a
string of length i to an empty string. dp[0][j] = j for all j, since it takes j insertions to convert
an empty string to a string of length j. dp[0][0] = 0, since no operations are needed to convert an
empty string to another empty string.

3. For each character in the first string and each character in the second string: If the characters match,
set dp[i][j] = dp[i-1][j-1]. If the characters do not match, set dp[i][j] = min(dp[i-1][j]

+ 1, dp[i][j-1] + 1, dp[i-1][j-1] + 1).

4. The minimum edit distance will be found in dp[n][m] where n is the length of the first string and m

is the length of the second string.

10

#include <bits/stdc++.h>

using namespace std;

int editDistance(const string& s1, const string& s2) {

int n = s1.size(), m = s2.size();

vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));

for (int i = 0; i <= n; i++) {

dp[i][0] = i;

}

for (int j = 0; j <= m; j++) {

dp[0][j] = j;

}

for (int i = 1; i <= n; i++) {

for (int j = 1; j <= m; j++) {

if (s1[i - 1] == s2[j - 1]) {

dp[i][j] = dp[i - 1][j - 1];

} else {

dp[i][j] = min({dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] +

1});

}

}

}

return dp[n][m];

}

11

9 Subset Sum Problem

10 String Partition

11 Catalan Numbers

12 Matrix Chain Multiplication

13 Count Distinct Ways

14 DP on Grids

15 DP on Trees

16 DP on Graphs

17 Digit DP

18 Bitmasking DP

19 Probability DP

20 State Machine DP

12

3 Tree Algorithms

1 Fenwick Tree (Binary Indexed Tree)

A Fenwick Tree, or Binary Indexed Tree (BIT), is a data structure that efficiently supports prefix sum and
point update operations in logarithmic time. It is commonly used in scenarios involving prefix sums, such as
counting inversions, cumulative frequencies, or range sum queries with updates.

Key Operations:

• update(i, v): Add v to index i (point update)

• query(i): Compute prefix sum up to index i

Tree Structure Visualized (for n = 8 elements):

1 2 3 4 5 6 7 8

Each index stores a sum over some range defined by the least significant bit of the index.
C++ Implementation:

13

#include <bits/stdc++.h>

using namespace std;

vector<int> bit; // binary indexed tree, 1-based indexing

int n;

void init_fenwick(int size) {

n = size;

bit.assign(n + 1, 0);

}

// Add val to index i

void update(int i, int val) {

for (; i <= n; i += i & -i)

bit[i] += val;

}

// Get prefix sum up to i

int query(int i) {

int ans = 0;

for (; i > 0; i -= i & -i)

ans += bit[i];

return ans;

}

// Get sum of range [l, r]

int query_range(int l, int r) {

return query(r) - query(l - 1);

}

Quick facts:

• Construction: O(n log n) or O(n) using special build

• Supports: Point updates, prefix/range sums

• Does NOT support: Range updates, range queries (unless advanced tricks used)

14

2 Segment Tree (Standard)

A Segment Tree efficiently supports range queries and point updates, often outperforming Fenwick Trees
for more complex operations than just sums.

Key Features:

• Point update: Add or set a value at index i

• Range query: Compute sum, min, max, etc., over range [l , r]

Segment Tree Visualization (Perfect binary segmentation):

[0, 7]

[0, 3]

[0, 1]

[0, 0] [1, 1]

[2, 3]

[2, 2] [3, 3]

[4, 7]

[4, 5]

[4, 4] [5, 5]

[6, 7]

[6, 6] [7, 7]

C++ Implementation (Range Sum, 0-based):

15

#include <bits/stdc++.h>

using namespace std;

int seg_size;

vector<int> seg_tree;

void init_segment_tree(int n) {

seg_size = 1;

while (seg_size < n) seg_size <<= 1;

seg_tree.assign(2 * seg_size, 0);

}

void set_val(int i, int v, int x, int lx, int rx) {

if (rx - lx == 1) {

seg_tree[x] = v;

return;

}

int m = (lx + rx) / 2;

if (i < m) set_val(i, v, 2*x+1, lx, m);

else set_val(i, v, 2*x+2, m, rx);

seg_tree[x] = seg_tree[2*x+1] + seg_tree[2*x+2];

}

void set_val(int i, int v) {

set_val(i, v, 0, 0, seg_size);

}

int seg_sum(int l, int r, int x, int lx, int rx) {

if (lx >= r || rx <= l) return 0; // no overlap

if (lx >= l && rx <= r) return seg_tree[x]; // complete overlap

int m = (lx + rx) / 2;

return seg_sum(l, r, 2*x+1, lx, m) + seg_sum(l, r, 2*x+2, m, rx);

}

int seg_sum(int l, int r) {

return seg_sum(l, r, 0, 0, seg_size);

}

Supports: point update and range query in O(log n).

16

3 Segment Tree with Lazy Propagation

When you have to perform range updates (e.g., add a value to all elements in range [l , r]) along with range
queries, a standard segment tree isn’t enough: you need Lazy Propagation.

Lazy Propagation Idea: Postpone (”lazily”) the update to children until needed, marking segments as
needing to be updated later.

Visualization:

lazy=0

lazy=2

0 0

lazy=0

0 0

Here, yellow nodes have nonzero ”lazy” values pending. When queried or split, values are pushed down.
C++ Implementation (Range add, range sum):

17

#include <bits/stdc++.h>

using namespace std;

int lazy_seg_size;

vector<long long> lazy_tree, lazy;

void init_lazy_segment_tree(int n) {

lazy_seg_size = 1;

while (lazy_seg_size < n) lazy_seg_size <<= 1;

lazy_tree.assign(2 * lazy_seg_size, 0LL);

lazy.assign(2 * lazy_seg_size, 0LL);

}

void push(int x, int lx, int rx) {

if (lazy[x] != 0 && rx - lx > 1) {

lazy_tree[2*x+1] += lazy[x] * ((rx - lx) / 2);

lazy[2*x+1] += lazy[x];

lazy_tree[2*x+2] += lazy[x] * ((rx - lx) / 2);

lazy[2*x+2] += lazy[x];

lazy[x] = 0;

}

}

void range_add(int l, int r, long long v, int x, int lx, int rx) {

if (lx >= r || rx <= l) return; // no overlap

if (lx >= l && rx <= r) {

lazy_tree[x] += v * (rx - lx);

lazy[x] += v;

return;

}

push(x, lx, rx);

int m = (lx + rx) / 2;

range_add(l, r, v, 2*x+1, lx, m);

range_add(l, r, v, 2*x+2, m, rx);

lazy_tree[x] = lazy_tree[2*x+1] + lazy_tree[2*x+2];

}

void range_add(int l, int r, long long v) {

range_add(l, r, v, 0, 0, lazy_seg_size);

}

long long range_sum(int l, int r, int x, int lx, int rx) {

if (lx >= r || rx <= l) return 0;

if (lx >= l && rx <= r) return lazy_tree[x];

push(x, lx, rx);

int m = (lx + rx) / 2;

return range_sum(l, r, 2*x+1, lx, m) + range_sum(l, r, 2*x+2, m, rx);

}

long long range_sum(int l, int r) {

return range_sum(l, r, 0, 0, lazy_seg_size);

}

18

Summary Table:
Structure Point Update Range Query Range Update
Fenwick Tree O(log n) O(log n) No
Segment Tree O(log n) O(log n) No
Lazy Segment Tree O(log n) O(log n) O(log n)

19

	Graph Algorithms
	Breadth-First Search (BFS)
	Depth-First Search (DFS)
	Topological Sorting

	Dynamic Programming
	Fibonacci Sequence
	Kadane's Algorithm
	0/1 Knapsack Problem
	Unbounded Knapsack Problem
	Longest Common Subsequence (LCS)
	Longest Increasing Subsequence (LIS)
	Palindromic Subsequence
	Edit Distance
	Subset Sum Problem
	String Partition
	Catalan Numbers
	Matrix Chain Multiplication
	Count Distinct Ways
	DP on Grids
	DP on Trees
	DP on Graphs
	Digit DP
	Bitmasking DP
	Probability DP
	State Machine DP

	Tree Algorithms
	Fenwick Tree (Binary Indexed Tree)
	Segment Tree (Standard)
	Segment Tree with Lazy Propagation

