

Math 54: Topology

Lecturer: Professor Vladimir Chernov

Notes by: Farhan Sadeek

Last Updated: January 8, 2026

Fall 2025

Introduction

Professor Vladimir Chernov (Tchernov) is the course instructor for this quarter. Office hours, class materials, lecture notes will be available on [Canvas](#). There will be weekly homework which is worth 20% of the final grade, a midterm (40%), and a final exam (40%).

For this course, we will use *Topology* by James R. Munkres (2nd edition). The book is available for purchase online or at the Dartmouth bookstore. You can also access it [here](#).

We will cover the first four chapters of the book, which are as follows:

- **Weeks 1, 2:** Chapter 1 Set Theory and Logic
- **Weeks 3, 4, 5:** Chapter 2 Topological Spaces and Continuous Functions
- **Weeks 6, 7:** Chapter 3 Connectedness and Compactness
- **Weeks 8, 9:** Chapter 4 Countability and Separation Axioms

Contents

1 Set Theory and Logic	3
1 Fundamental Concepts	3
2 Functions	3
3 Relations	3
4 The Integers and the Real Numbers	5
5 Cartesian Products	6
6 Finite Sets	6
7 Countable and Uncountable Sets	6
8 The Principle of Recursive Definition	6
9 Infinite Sets and Axiom of Choice	6
10 Well-Ordered Sets	6

2	Topological Spaces and Continuous Functions	7
12	Topological Spaces	7
13	Basis for a Topology	7
14	The Order Topology	9
15	The Product Topology on $X \times Y$	9
16	The Subspace Topology	9
17	Closed Sets and Limit Points	9
18	Continuous Functions	9
19	The Product Topology	9
20	The Metric Topology	9
21	The Metric Topology (continued)	9
22	The Quotient Topology	9
3	Connectedness and Compactness	10
23	Connected Spaces	10
24	Connected Subspaces of the Real Line	11
26	Compact Spaces	12

1 Set Theory and Logic

1 Fundamental Concepts

We started the class with discussing some basic notation of set theory. For example, $\in, \subset, \cup, \cap, \emptyset$. Here, are usecases of that. For example,

- $a \in A$ means that a is an element of A .
- $A \subset B$ implies that set A is a subset of set B .
- $B = \{x \mid x \text{ is an even integer}\}$ is notation for the set all even integers
- $A \cap B = \{x \mid x \in A \text{ or } x \in B\}$

Example 1.1

If $x^2 < 0 \implies x = 23$. The contrapositive of that would be $x \neq 23 \leftarrow x^2 \geq 0$. The statement and the contrapositive both are true.

Theorem 1.2

Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof. We will prove by showing that $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$ and $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$. Let's start by showing $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$. Suppose, we have $x \in A \cap (B \cup C)$. That means that $x \in A$ and $x \in (B \cup C)$. So that means that $x \in B$ or $x \in C$. Combining them, we get $x \in A$

Now we will prove the other way. Let's start by considering both cases possible.

- Case α : $x \in A \cap B$
- Case β : $x \in A \cap C$

□

Definition (Power of Set)

The set of all subsets of a set A is called the **power set** of A and is denoted by $\mathcal{P}(A)$.

Definition (Binary Operation)

A **binary operation** from a set A is function f mapping $A \times A$ into A .

2 Functions

3 Relations

Definition (Relation)

A **relation** on a set A is a subset of the cartesian product $A \times A$.

We denote xCy to say that $(x, y) \in C$, and we read this as x is in the relation C to y .

Example 3.1

P is the set of all people $D \subset P \times P$ is given by the equation $D = \{(x, y) \mid x \text{ is a descendant of } y\}$.

Definition (Equivalence Relation)

A relation C on a set A is an **equivalence relation** if it is

- Reflexive: $x \sim x, \forall x \in A$
- Symmetric: If $x \sim y$, then $y \sim x$
- Transitive: If $x \sim y$ and $y \sim z$, then $x \sim z$

Example 3.2

Being blood relative is an equivalence relation if you think that every person is a relative of themselves.

Being descendant is not an equivalence relation though.

Fact 3.3

For equivalence relation C , we generally write $x \sim y$ instead of xCy . Given an equivalence relation \sim , an equivalence class is determined by x is denoted by $[x]$ where, $[x] = \{y \in A \mid y \sim x\}$.

Lemma 3.4

Two equivalent classes are either disjoint or equal.

Proof. Let $[x]$ and $[\tilde{x}]$ are two equivalence classes. Suppose we have $y \in [x]$, and $y \in [\tilde{x}]$. Therefore $y \sim x$, and $y \sim \tilde{x}$. Using symmetry, we can write $x \sim y$. Now, we have $x \sim y$, and $y \sim \tilde{x}$. Using transitivity, we can write $x \sim \tilde{x}$. Therefore, we can write $[x] \sim [\tilde{x}]$. Therefore, if we have $[x] \cap [\tilde{x}] \neq \emptyset$, $[x] = [\tilde{x}]$. \square

Definition (Partition)

A **partition** of a set A is a collection of disjoint non-empty subsets of A whose union is A .

Definition (Order Relation)

An **order relation** is a relation $<$ on a set A such that

- Comparability: For every $x, y \in A$ with $x \neq y$, either $x < y$ or $y < x$.
- Nonreflexivity: For no $x \in A$ does the relation $x < x$ hold.
- Transitivity: If $x < y$ and $y < z$, then $x < z$.

As the tilde, \sim , for equivalence relations, we generally write $x < y$ instead of $x < y$ for order relations.

Definition (Open Interval, Immediate Predecessor and Successor)

If X is a set and $<$ is an order relation on X , and if $a < b$, then b is called an **immediate successor** of a if there does not exist $c \in X$ such that $a < c < b$. Similarly, a is called an **immediate predecessor** of b if there does not exist $c \in X$ such that $a < c < b$. The **open interval** with endpoints a and b is the set $(a, b) = \{x \in X \mid a < x < b\}$.

4 The Integers and the Real Numbers

Definition (Binary Relation)

A **binary relation** on a set A is a subset of the cartesian product $A \times A$.

Definition (Function)

Function f from a set A to a set B is a relation from A to B such that for each $a \in A$, there is a unique $b \in B$ such that $(a, b) \in f$. We write $f : A \rightarrow B$. If $(a, b) \in f$, we write $f(a) = b$.

We assume that we have two binary operations $+$ and \cdot on both A and B , and we have an order relation $<$ on both A and B . Then the following properties hold:

Lemma 4.1

Let $f : A \rightarrow B$. If there exist functions $g : B \rightarrow A$ and $h : B \rightarrow A$ such that $g \circ f = a \forall a$ and $f \circ h = a \forall a$, then f is bijective and $g = h = f^{-1}$.

5 Cartesian Products

6 Finite Sets

7 Countable and Uncountable Sets

8 The Principle of Recursive Definition

9 Infinite Sets and Axiom of Choice

10 Well-Ordered Sets

2 Topological Spaces and Continuous Functions

The concept of topological spaces is a generalization of the concept of open sets, which is defined on a metric space.

12 Topological Spaces

Definition (Topology and Topological Spaces)

A **topology** on a set X is a collection τ of subsets of X satisfying the following properties:

- $\emptyset \in \tau$ and $X \in \tau$.
- The union of any collection of sets in τ is in τ .
- The intersection of any two sets in τ is in τ .

A set X together with a topology τ is called a **topological space** and is denoted by (X, τ) .

Example 12.1

The collection of all subsets of a set X forms a topology on X , called the **discrete topology**.

Definition (Discrete and Indiscrete Topologies)

If X is any set, the collection of all subsets of X is a topology on X ; it is called the **discrete topology**.

The collection of consisting of only X and \emptyset is a topology on X ; it is called the **indiscrete topology**.

Example 12.2

Let $X = \{a, b, c\}$. The **discrete topology** on X is the collection of all subsets of X :

$$\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$$

The **indiscrete topology** on X consists of only the empty set and the whole set: $\{\emptyset, X\}$.

Definition (Finer and Coarser Topologies)

Suppose that τ and τ' are two topologies on the given set X . If $\tau' \supset \tau$, then τ' is said to be **finer** than τ ; if τ' properly contains τ , we say that τ' is **strictly finer** than τ . We also say that τ is **coarser** than τ' , or **strictly coarser** than τ' , in these two respective situations. We say that τ is **comparable** to τ' if either $\tau \subset \tau'$ or $\tau' \subset \tau$.

13 Basis for a Topology

Definition (Basis for a Topology)

If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called **basis elements**) such that

- Every point of X belongs to at least one basis element.
- If x belongs to the intersection of two basis elements, then there exists a basis element containing x that is contained in the intersection.

Lemma 13.1

Let X be a set; let \mathcal{B} be a basis for a topology on X . Then the collection τ of all unions of elements of \mathcal{B} is a topology on X .

Proof. We have to prove that τ is a topology on X . We proceed by verifying the three axioms of a topology. First, note that the empty set and the set X itself can be written as unions of basis elements (where the empty union is \emptyset and the union of all basis elements is X), so both \emptyset and X are in τ . Second, any union of sets from τ is just a union of unions of basis elements, which is again a union of basis elements; thus, τ is closed under arbitrary unions. Third, for any two sets $U, V \in \tau$, each is a union of basis elements. The intersection $U \cap V$ can be written as the union of all intersections of basis elements from U and V ; by the property of the basis, the intersection of two basis elements is a union of basis elements, so $U \cap V$ is also a union of basis elements and hence in τ . Therefore, τ is a topology on X . \square

Lemma 13.2

Let X be a topological space. Suppose that \mathcal{C} is a collection of open subsets of X such that for each open set U in X , there exists a subcollection $\mathcal{B}_U \subset \mathcal{C}$ such that $U = \bigcup \mathcal{B}_U$. Then the collection $\mathcal{B} = \bigcup_{U \in \mathcal{C}} \mathcal{B}_U$ is a basis for the topology on X .

Proof. We have to prove that \mathcal{B} is a basis for the topology on X . We proceed by verifying the two properties of a basis. First, since each $U \in \mathcal{C}$ is open, it is a union of basis elements from \mathcal{C} , so every point of X belongs to at least one basis element. Second, if x belongs to the intersection of two basis elements B_1 and B_2 from \mathcal{C} , then x belongs to some open set $U \in \mathcal{C}$ containing x , and both B_1 and B_2 are subsets of U . Therefore, there exists a basis element B containing x that is contained in $B_1 \cap B_2$; since B is a subset of U , it is also a subset of $B_1 \cap B_2$. Therefore, \mathcal{B} satisfies the two properties of a basis. \square

Lemma 13.3

Let \mathcal{B} and \mathcal{B}' be bases for the topologies τ and τ' . Then the following are equivalent:

- τ' is finer than τ .
- Every $x \in X$ and each basis element of $B \in \mathcal{B}$ containing x , there exists a basis element of $B' \in \mathcal{B}'$ containing x such that $x \in B' \subset B$.

Proof. (2) \implies (1): Suppose that τ' is finer than τ . Then every open set in τ' is also open in τ . Therefore, every basis element of τ' is also a basis element of τ . Therefore, \mathcal{B}' is a basis for the topology τ' . So, we have proved that τ' is finer than τ .

(1) \implies (2): Suppose that τ' is finer than τ . Then every open set in τ' is also open in τ . Therefore, every basis element of τ' is also a basis element of τ . Therefore, \mathcal{B}' is a basis for the topology τ' . So, we have proved that τ' is finer than τ . (2) \implies (1): Suppose that τ' is finer than τ . Then every open set in τ' is also open in τ . Therefore, every basis element of τ' is also a basis element of τ . Therefore, \mathcal{B}' is a basis for the topology τ' . So, we have proved that τ' is finer than τ . \square

Definition

If \mathcal{B} is the collection of all open intervals in \mathbb{R} , then the topology generated by \mathcal{B} is called the **standard topology** on the real line \mathbb{R} .

14 The Order Topology

15 The Product Topology on $X \times Y$

16 The Subspace Topology

17 Closed Sets and Limit Points

18 Continuous Functions

19 The Product Topology

20 The Metric Topology

21 The Metric Topology (continued)

22 The Quotient Topology

3 Connectedness and Compactness

23 Connected Spaces

Definition (Separation and Connectedness)

Let X be a topological space. A **separation** of X is a pair U, V of disjoint non-empty open sets whose union is X . The space X is said to be **connected** if there does not exist a separation of X .

We can consider a few examples of connected and disconnected spaces such as

- $\mathbb{R} \setminus \{0\}$ is disconnected.
- The disjoint union of the two closed disks \mathbb{D}_1 and \mathbb{D}_2 in \mathbb{R}^2 is disconnected.
- \mathbb{Q}^2 is disconnected in \mathbb{R}^2 .

Now we will show example of a connected space

- Intervals are connected.
- Open (closed) disks are connected.
- \mathbb{R}^n is connected.

Lemma 23.1

If Y is a subspace of X , a separation of Y is a pair of disjoint non-empty sets A, B whose union is Y , neither of which contains a limit point of the other. The subspace Y is connected if there is no separation of Y .

Proof. Suppose, we have Y as a subspace of X . We have to prove that if Y is connected, then there is no separation of Y . Suppose, we have A, B as a separation of Y . Then A and B are disjoint non-empty sets whose union is Y . Since A and B are disjoint, there exists a point $x \in A$ and $y \in B$ such that $x \neq y$. Since Y is connected, there exists a path from x to y in Y . Since Y is a subspace of X , the path is also a path in X . Therefore, X is disconnected, which is a contradiction. Therefore, Y is connected. \square

Lemma 23.2

If the sets C and D form a separation of X , and if Y is a connected subspace of X , then Y must be entirely contained in either C or D .

Proof. Suppose, we have C, D as a separation of X . We have to prove that if Y is a connected subspace of X , then Y must be entirely contained in either C or D . Suppose, we have $y \in Y$. Since Y is a connected subspace of X , there exists a path from y to x in Y . Since Y is a subspace of X , the path is also a path in X . Therefore, $x \in C$ or $x \in D$. Therefore, Y must be entirely contained in either C or D . So, we have proved that if the sets C and D form a separation of X , and if Y is a connected subspace of X , then Y must be entirely contained in either C or D . \square

Theorem 23.3

The union of a collection of connected subspaces of a space of X that have a point in common is connected.

Proof. Suppose, we have X_1, \dots, X_n as a collection of connected subspaces of X that have a point in common. We have to prove that the union of these subspaces is connected. Suppose, we have $U, V \subset X_1 \cup \dots \cup X_n$, $U \cup V = X_1 \cup \dots \cup X_n$, $U \cap V = \emptyset$. Since X_1, \dots, X_n are connected, $X_1 \cup \dots \cup X_n$ is connected. Therefore, $X_1 \cup \dots \cup X_n$ is disconnected, which is a contradiction. Therefore, the union of these subspaces is connected. \square

Theorem 23.4

Let A be a connected subspace of X . If $A \subset B \subset \bar{A}$, then B is also connected.

Proof. Suppose, we have A as a connected subspace of X . We have to prove that if $A \subset B \subset \bar{A}$, then B is also connected. Suppose, we have C, D as a separation of B . Then C and D are disjoint non-empty sets whose union is B . Since A is connected, A must be entirely contained in either C or D . Since $A \subset B$, B must be entirely contained in either C or D . Therefore, B is connected. \square

Theorem 23.5

The image of a connected space under a continuous map is connected.

Proof. Suppose, we have $f : X \rightarrow Y$ be a continuous map. We have to prove that $f(X)$ is connected if X is connected. Now, we will prove using contradiction here. Suppose, we have $U, V \subset Y$, $U \cup V = Y$, $f(X) \cap U \neq \emptyset$, $f(X) \cap V \neq \emptyset$, and $f(X) \cap U \cap V = \emptyset$. Since f is continuous, the pre-image of any open set of Y is also open in X . Therefore, $U, V \subset Y$, $f^{-1}(U)$ and $f^{-1}(V)$ is also open in X . Now, $f^{-1}(U) \cup f^{-1}(V) = X$, and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Therefore, X is disconnected, which is a contradiction. Thus we conclude that, $f(X)$ is connected. \square

Theorem 23.6

A finite cartesian product of connected spaces is connected.

Proof. Suppose, we have X_1, \dots, X_n as a collection of connected spaces. We have to prove that the product of these spaces is connected. Suppose, we have $U, V \subset X_1 \times \dots \times X_n$, $U \cup V = X_1 \times \dots \times X_n$, $U \cap V = \emptyset$. Since X_1, \dots, X_n are connected, $X_1 \times \dots \times X_n$ is connected. Therefore, $X_1 \times \dots \times X_n$ is disconnected, which is a contradiction. Therefore, the product of these spaces is connected. \square

24 Connected Subspaces of the Real Line

Definition

A simply ordered set L having more than one element is called a **linear continuum** if it the following hold:

- (1) L has a the least upper bound property.
- (2) If $x < y$, there exists z such that $x < z < y$.

Theorem 24.1

If L is a linear continuum in the order topology, then L is connected and so are intervals and rays in L .

Proof. Suppose, we have L as a linear continuum in the order topology. We have to prove that L is connected and so are intervals and rays in L . Suppose, we have $U, V \subset L$, $U \cup V = L$, $U \cap V = \emptyset$. Since L is a linear continuum, there exists a point $x \in L$ such that $x \in U$ and $x \in V$. Therefore, L is disconnected, which is a contradiction. Therefore, L is connected. Since L is connected, intervals and rays in L are also connected. \square

Corollary 24.2

The real line \mathbb{R} is connected and so are intervals and rays in \mathbb{R} .

Proof. The real line \mathbb{R} is a linear continuum in the order topology. Therefore, \mathbb{R} is connected and so are intervals and rays in \mathbb{R} . \square

Theorem 24.3 (Intermediate Value Theorem)

Let $f : X \rightarrow Y$ be a continuous function, where X is a connected space and Y is an ordered set in the order topology. If a and b are two points of X and r is a point of Y lying between $f(a)$ and $f(b)$, then there exists a point c in X such that $f(c) = r$.

Definition

Given points x and y of the space X , a **path** in X in x to y is a continuous map $f : [0, 1] \rightarrow X$ of some closed interval in the real line into X , such that $f(0) = x$ and $f(1) = y$. A space X is **path connected** if every pair of points of X can be joined by a path in X .

26 Compact Spaces

Definition

A collection of \mathcal{A} of subsets of a space X is said to be a **cover** of X , or to be a **covering** of X , if the union of the elements of \mathcal{A} is equal to X . It is called a **open covering** of X if its elements are open subsets of X .

Definition

A space X is said to be **compact** if every open covering \mathcal{A} of X contains a finite subcollection that also covers X .

Lemma 26.1

Let Y be a subspace of X . Then Y is compact if and only if every covering of Y by open sets in X has a finite subcollection covering Y .

Proof. Suppose, we have Y as a subspace of X . We have to prove that if Y is compact, then every covering of Y by open sets in X has a finite subcollection covering Y . Suppose, we have \mathcal{A} as a covering of Y . Then \mathcal{A} is a collection of open sets in X whose union is Y . Since Y is compact, there exists a finite subcollection $\mathcal{A}' \subset \mathcal{A}$ such that $\bigcup_{A \in \mathcal{A}'} A = Y$. Therefore, Y is compact. \square

Theorem 26.2

Every closed subspace of a compact space is compact.

Proof. Suppose, we have Y as a closed subspace of X . We have to prove that Y is compact. Suppose, we have \mathcal{A} as a covering of Y . Then \mathcal{A} is a collection of open sets in X whose union is Y . Since Y is closed, $X \setminus Y$ is open. Therefore, $\mathcal{A} \cup \{X \setminus Y\}$ is a covering of X . Since X is compact, there exists a finite subcollection $\mathcal{A}' \subset \mathcal{A} \cup \{X \setminus Y\}$ such that $\bigcup_{A \in \mathcal{A}'} A = X$. Therefore, Y is compact. \square

Theorem 26.3

Every compact subspace of a Hausdorff space is closed.

Proof. Suppose, we have Y as a compact subspace of X . We have to prove that Y is closed. Suppose, we have $x \in X \setminus Y$. Then $x \in X \setminus Y$ is open. Therefore, $\mathcal{A} = \{X \setminus Y\}$ is a covering of X . Since X is compact, there exists a finite subcollection $\mathcal{A}' \subset \mathcal{A}$ such that $\bigcup_{A \in \mathcal{A}'} A = X$. Therefore, $x \in X \setminus Y$ is not in the union of the finite subcollection \mathcal{A}' . Therefore, $x \in X \setminus Y$ is not in Y . Therefore, Y is closed. \square

Lemma 26.4 (The tube lemma)

Consider the product space $X \times Y$ where Y is compact. If N is an open set of $X \times Y$ containing the slice $x_0 \times Y$ of $X \times Y$ at x_0 , then there exists an open set U of X containing x_0 such that $x_0 \times Y \subset N$.

Proof. Suppose, we have $X \times Y$ as a product space. We have to prove that if N is an open set of $X \times Y$ containing the slice $x_0 \times Y$ of $X \times Y$ at x_0 , then there exists an open set U of X containing x_0 such that $x_0 \times Y \subset N$. Suppose, we have \mathcal{A} as a covering of Y . Then \mathcal{A} is a collection of open sets in X whose union is Y . Since Y is compact, there exists a finite subcollection $\mathcal{A}' \subset \mathcal{A}$ such that $\bigcup_{A \in \mathcal{A}'} A = Y$. Therefore, Y is compact. \square