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1 January 5, 2026

Today was more like the introduction to the course. He said that the exams would be in-person rather than
take-home this term. The weekly homework assignments would be released on Wednesdays and due on the

upcoming Friday of the following week. So, today we will talk about sets and functions.

1 Sets
Definition 1 (Set)
A set is a collection of objects. We denote sets by capital letters such as A, B, C, .... We denote the
elements of a set by lowercase letters such as a, b, c,.... If ais an element of A, we write a € A. If a

is not an element of A, we write a ¢ A.

Theorem 2
Prove that if X C Sand Y C S, then (X NY<) = (XUY)°.

Proof. Let x € (X°NY®). Then x € X and x € Y¢. Therefore, x ¢ X and x ¢ Y. So, x ¢ X UY.
Therefore, x € (X UY)€.

Now, let x € (X UY)C. Then x ¢ X UY. Therefore, x ¢ X and x ¢ Y. So, x € X¢ and x € Y€.
Therefore, x € (X°NY*°).

Therefore, (X°NY<) =(XUY)C. O]

Theorem 3
Prove that if / and S are sets and if for each i € / we have X; C S, then (N;¢; Xi)¢ = U, X[

Proof. We will prove set equality by showing both inclusions.
(C) Suppose x € (Nig; Xi)¢. By the definition of complement, x ¢ ;c; X;. This means that there
exists some / € | such that x ¢ X;. Therefore, x € X, and so x € J;¢; X{. Hence,

xe (XN = xelJX£,
icl icl
and thus (Mg, Xi)¢ € Ui X£.
(2) Conversely, let x € U;¢; Xf. Then there exists some i € / such that x € X[, i.e., x € X;. Therefore,
x is not in every Xj, so x ¢ (;c; Xi, which means x € ([N;¢; X;)¢. Thus,
xel|JXF = xe(X)°
i€l icl

so Ujes XF € (Njes X<



Combining the two inclusions, we have

(X =UXF.

icl icl

2 Functions

Definition 4 (Function)
A function from a set A to a set B is a subset f C A x B such that for each a € A, there exists a
unique b € B such that (a, b) € f.

We denote a function f from A to B as f : A — B. We denote the element f(a) as the image of a under
f. We denote the set of all functions from A to B as BA.

Definition 5 (Image)
The image of a function f : A — Bisthe set {b € B |Jac A(f(a) = b)}.
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Today is the first day of actual lecture; the professor said that the first day was just more as introduction.
We are learning more about real numbers today. We can assume that we have learnt set theory and high
school arithmetic. Today's topic of discussion is more like Basic Arithmetic and Elementary Algebra.

All of analysis and calculus is built on top of real numbers.

3 The Field Property

Definition 6 (Field)
A field is a structure that consists of a set F and two distinguished elements 0, 1 € F and two functions,

+, x (binary operations), F x F — F such that the following axioms are satisfied:

(I) Commutativity: Foralla,be F,a+ b=b+aandax b=>bx a.

(II) Associativity: For all a,b,c € F, (a+b)+c=a+(b+c)and (ax b)xc=ax (bxc).
(I1l) Distributivity: For all a,b,c € F, ax (b+c)=(ax b)+ (a x c).
(IV) Neutral Elements: Forallace F, a+0=aand ax 1=a.

(V) Inverses: For all a € F, there exists b € F such that a+ b = 0. For all a € F\ {0}, there exists
b€ F such that ax b= 1.




Some examples of fields are R,0,1,+, x, Q,0,1,+, x, C,0,1,+, x, Z/2Z,0,1,+, x. So, if we can prove
this for one field that means it should be true for all fields, and there are finitely many fields.

Now, we will learn what is implied by the field axioms. Here are the axioms:

(F1) Sums/products of several elements can be written without parentheses. For example, (a+b)+(c+d).

(F2) The product of zero and any element is zero: a x 0 = 0.

(F3) The elements b and ¢ from Axiom | are unique meaning b = —a and ¢ = 1/a. Assume that a+b =0,
and a+ d = 0. So this means that b = d. We can write this as b = —a and d = —a. Therefore,
b=d.

(F4) The elements b and ¢ from Axiom | are unique meaning b = —a and ¢ = 1/a. Assume that a+b = 0,
and a+ d = 0. So this means that b = d. We can write this as b = —a and d = —a. Therefore,
b=d.

(F5) a-0=0.

(F6) —(—a) = a.

(F7) (a V)1 =a.
(F8) —(a+ b) = (—a)+ (—b).
(F9) (=a)-(=b)=a-b.

4 Order

Definition 7 (Ordered Field)

An ordered field is a field F with a subset P C F called the set of positive numbers such that the
following axioms are satisfied on top of the field axioms:

(P1) Ifa,be P,thena+be Pandaxbe P.

(P2) For each a € F, exactly one of the following is true: a€ P, a=0, or —a € P. (Law of
Trichotomy)

The ordered field axioms have some more properties such as

(O1) Ifa,be P, thena> b, a= b, or a< b.

(02) If a,b,c € P, then a > b and b > c implies a > c.

(O5) The product of two negative numbers is positive.

(O9) Rules of elementary arithmetic work out as consequences of the ordered field axioms.

(010) If a> b, thena+c>b+cforall ce F.



Theorem 8
Prove thatif a,be F and a > b, thena+c > b+ cforall c € F.

Proof. Since a > b, then a— b € P. Therefore, a— b+ c € P. Therefore, a+c¢c > b+ c.
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5 The Least Upper Bound Property

Today we will discuss about the axioms of the real number sytems.

Definition 9 (Least Upper Bound)
A least upper bound of a set S C F is an element a € F such that a is an upper bound of S and if b
is any upper bound of S, then a < b.

Fact 10

Now, we will discuss some facts about the least upper bound.

« Z C Q has no least upper bound in Q. So, if we take the set of all integers and consider it as a

subset of the rational numbers, it has no least upper bound in the rational numbers.
« With F=Q, S = {x € Q| x2 > 2} has no least upper bound in Q.

« ) C R has a an upper bound, but it has no least upper bound.

Definition 11 (Maximum)
A maximum of a set S C F is an element a € S such that a is an upper bound of S and if b is any

upper bound of S, then a > b.

Definition 12 (Completely Ordered Field)
A completely ordered field is an ordered field F such that it also satisfies the least uppoer bound
property which is if S C F and

- S#0

« S has an upper bound

Proof. Q are not completey ordered



Lemma 13
For every X € R, there exist n € Z such that n < X.

Proof. Suppose towards a contradiction that for every n € Z, n > X. Then X is an upper bound of Z.
Therefore, X is an upper bound of N. Therefore, X is a least upper bound of N. Therefore, X is a rational
number. Therefore, X is a real number. Therefore, X is a rational number. ]

Lemma 14
For any X € R, there exist n € Z such that n =1,2,3, ... such that % < X.

Proof. Suppose towards a contradiction that for every n € Z, n = 1,2,3, ... such that % > X. Then X
is a lower bound of N. Therefore, X is a lower bound of Z. Therefore, X is a greatest lower bound of Z.
Therefore, X is a rational number. Therefore, X is a real number. Therefore, X is a rational number. [

Lemma 15
For every x € R and € > 0, there exist r € Q such that x —e < r < x+e€or [x —r| <e.

Proof. Let S={x€R|x>0,x° < a}. Since, 0 € R and 0° < a, then 0 € S. Therefore, S is non-empty.
Since, a € R and a > 0, then a € S. Therefore, S is bounded above by a. Therefore, S has a least upper
bound b. We will show that b? = a. Suppose towards a contradiction that b% # a. Then b? < a or b > a.
If b2 < a, then b is not an upper bound of S. This is a contradiction. If b2 > a, then b is not a least upper
bound of S. This is a contradiction. Therefore, b2 = a. Therefore, we proved that b exists. L]
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6 The Existence of the Square Roots

Today we started the class with the discussion that square roots exists for real numbers. Then we moved
on to talk about the metric space and the properties of the metric space.

Proposition 16
For every a € R, a > 0, there exists b € R, b > 0 such that b> = a. Moreover, b is unique.

Proof. We will prove the uniqueness property first and then the existence property. Suppose towards a
contradiction that b = a and ¢ = awith b > 0 and ¢ > 0. Assume that b # c. Without loss of generality,
assume that b > c. Then b?> > c2. Therefore, a > a. This is a contradiction. Therefore, b = c. Therefore,
we proved that b is unique.

Now, we will prove the existence property. Let S = {x € R | x > 0,x? < a}. Since, 0 € R and 0° < a,
then 0 € S. Therefore, S is non-empty. Since, a € R and a > 0, then a € S. Therefore, S is bounded above



by a. Therefore, S has a least upper bound b. We will show that b> = a. Suppose towards a contradiction
that b # a. Then b < aor b?> > a. If b° < a, then b is not an upper bound of S. This is a contradiction.
If b2 > a, then b is not a least upper bound of S. This is a contradiction. Therefore, b°> = a. Therefore,
we proved that b exists. ]

So, this is the end of Chapter 2, and we will move to Chapter 3, which is about metric spaces.

7 Metric Spaces

Definition 17 (Metric Space)
A metric space is a set £ together with a function d : E x E — R that satisfies the following axioms:

(M1) d(p,q) >0 forall p,q € E.
(M2) d(p,q) =0 if and only if p = gq.
(M3) d(p,q) =d(q,p) forall p,qg € E.

(M4) d(p,q) <d(p,r)+d(r,q)forall p,g,reE.




Example 18

E = any set, such as Z, and

0 ifp=
d(p,q)z{ nped
1 ifp#gq

Now we will check the axioms of the metric space. So the first three axioms are satisfied. Now, we will
check the fourth axiom. So, we have d(p, q) < d(p, r)+d(r, q). Since, d(p, g) = 0 if and only if p = q,
and d(p,r) =0ifand only if p=r, and d(r, q) = 0 if and only if r = q, then d(p, q) < d(p, r)+d(r, q)
is satisfied. Therefore, the fourth axiom is satisfied. Therefore, (Z, d) is a metric space.

Example 19
E =R, and
d(p,q)=|p—dl

Now we will check the axioms of the metric space. So the first three axioms are satisfied. Now, we
will check the fourth axiom. So, we have d(p,q) < d(p,r) + d(r,q). Since, d(p,q) = |p— ql, and
d(p,r) = |p—rl|, and d(r,q) = |r —q|, then d(p,q) < d(p,r) + d(r,q) is satisfied. Therefore, the

fourth axiom is satisfied. Therefore, (R, d) is a metric space.
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We are more interested in “Euclidean Spaces” today and for this class in general. We can define a metric

space like that as
E=R"={(p1,p2 ..., pn) | pi €Rforalli=1,2,..., n}.

We also define the distance function

d(p.a) = /(P — @) + (P2 — @2)2 + - + (P — an)?.

This is the Euclidean distance between the two points p and q.

y

Proposition 20

An Euclidean space is a metric space.




Proof. Since we are trying to prove we have to show the four axioms of the metric space. So, we will show
the four axioms of the metric space.

(M1) d(p,q) >0 forall p,qg € E.
(M2) d(p,q) =0 if and only if p=q.
(M3) d(p,q) =d(q,p) forall p,g € E.

(M4) d(p,q) < d(p,r)+d(r,q) forall p,q,r € E.

So, we will show the four axioms of the metric space. So, we will show the first axiom. So, we have d(p, q) >
0 for all p,g € E. Since, d(p,q) = (p1 — q1)2+ (p2 — ¢2)2+ ... + (pn — gn)2, then d(p, q) > 0 is satis-
fied. Therefore, the first axiom is satisfied. So, we will show the second axiom. So, we have d(p, q) = 0 if
and only if p = g. Since, d(p,q) = v/(p1 — q1)?> + (P2 — ¢2)> + ... + (pn — Gn)?. then d(p, q) = 0 if and
only if p = q is satisfied. Therefore, the second axiom is satisfied. So, we will show the third axiom. So, we
have d(p, q) = d(q, p) for all p, g € E. Since, d(p, q) = v/(p1 — @1)% + (P2 — G2)% + ... + (Pn — Gn)?, then
d(p,q) = d(q, p) is satisfied. Therefore, the third axiom is satisfied. So, we will show the fourth axiom. So,
we have d(p, q) < d(p, r)+d(r, q) forall p,q,r € E. Since, d(p, q) = v/(p1 — @1)% + (P2 — 2)? + ... + (Pn — dn)?.
then d(p, q) < d(p,r) + d(r, q) is satisfied. Therefore, the fourth axiom is satisfied. Therefore, (R”, d) is
a metric space. L]

Theorem 21 (Cauchy-Schwarz Inequality)

For any real numbers ay, a5, .. ., an and by, by, ..., bn, we have
n 2 n n
i=1 i=1 i=1

Proof. We proceed by induction on n. For the base case n = 1, we have two real numbers a and b. In this
case, (ab)? < a’b?, which is clearly true.

Now, suppose n > 2. Consider any pair of indices /i < j. Notice that
0 < (ajb; — ajb;)>.
Expanding this expression gives
(aibj — ajbj)® = a7 b7 — 2a,ajbib; + a7 b7 > 0,

which implies
2ajajbib; < a7b7 + a7 b7,

By summing such terms appropriately and using algebraic manipulation, we can show that

n n n

242 242 242
E a,bjgg a,b/—&-g a; b
i=1 i=1 j=1

10



ELEPRIET

i=1j=1

#b? to both sides of the inequality.

n n n n n
doarbi+d aihi <y > aibi+ ) ajby
i=1 j=1 j=1

i=1j=1

Now, we will add 37 a;

n n
S+ 2 <3S+ D)
=1 Jj=1

i=1j=1

n n n
Za b2+Za b2<ZZa,2bj2+ZaJ2b,2
Jj=1

i=1 j=1

Z a’b? + Z ajzb2 < ZZ(a b2 + .32b2
i=1 j=1

i=1j=1

Za b2+za b2 < 3OS (207 + 207)

i=1j=1

() (£4) - (B0 o)

(;f) (J; bf) < (anznja?berjz;afb?)

=1 =1
n n n n n
(£4) (4] < (S8 25 £ )
i—1 j=1 =1 =1 j=1

Therefore, we have proved the Cauchy-Schwarz Inequality.

Proposition 22
In Euclidean space, we have d(p, r) < d(p,q)+ d(q,r) forall p,q,r € R".

Proof. We know that Y7, ajb; < \/Zf:l af\/Zf:l b?. From that we get,

n
Za +2ajb; + b} <Za +2 Za ZbMbe
Jj=1 Jj=1 Jj=1 Jj=1
n n
Z(aj+b)2<2a +2 Za@ Zb2+2bf
j=1 Jj=1 Jj=1 j=1

n

zn:(aj +b)? < (\J z”: a? + \l 3 bf)z
j=1 = Z

Jzn:(aﬁbj)z < Jia%\libf
Jj=1 Jj=1

Jj=1

11



and we can write this

||+ bl| < [[al| +[[b]]
Now we take, a; = p; — q; and b; = gq; — r;. Then we get,

7=l <P =gl + lg— 7l

\JZ(PJ —1;)? < \JZ(PJ —q))?+ \J > (g —1)?
= = =

Then we can write

8 Open and Closed Sets

Definition 23 (Open Ball)

An open ball in R” in E with the center pyp € E and radious r > 0 is the set B(po,r) = {p € E |
d(p, po) < r}, and we write that has

B:(po) = B(po,r) ={p € E | d(p, po) < r}

, and in E2 this is a disk with center py and radius r, and in E3 this is a sphere with center py and radius
r, and E! it is an open interval with center py and radius r.

.
~

~
Seo -7

Open Ball B,(pg) in R?

_____

Open Set S with B,(p) C S

Definition 24 (Open Set)

An open set in R" is a subset S C E with the property

Vpe S,ar>0,B,(p)CS

Proposition 25

Ever open ball is an open set.

Proof. Let B,(po) be an open ball in R”. We have to show that B,(pp) is an open set. So, we will take any
p € B:(po). Then we have d(p, pp) < r. We will take 1 = r — d(p, po). Then we have B, (p) C B:(po).
Therefore, B,(pg) is an open set.

O]
12




B (p) C B(po) where ry = r — d(p, po)

Proposition 26

For any metric space, E,

1. the subset ) is open.
2. the subset E is open.

3. the union of any collection of open subsets of E is open.

4. the intersection of any finite collection of open subsets of E is open.

Proof. We will prove each of the four properties one by one.

«Vpe® Ir>0 B.(p) Cl. Since, 0 is a subset of any set, and () is open, we have that ) is open.
«Vpe E,3r >0,B,(p) C E. Since, E is a subset of any set, and E is open, we have that E is open.
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9 Convergent Sequences

Proposition 27

If a sequence has a limit, then the limit is unique.

Proof. Assume (p,) is a sequence in a metric space (E, d) and suppose that (p,) converges to both p and
g in E, where p # g. We will prove that this is impossible, i.e., limits are unique.

By the definition of convergence in a metric space, for any € > 0, there exists N; € N such that for all
n> Ni, d(pn, p) < €/2, and there exists N> € N such that for all n > Na, d(pp, q) < €/2.

13



Let N = max{Ny, No}. Then for all n > N, both d(pn, p) < €/2 and d(pp, q) < €/2. By the triangle
inequality,

€ €
d(p,q) < d(p,pn)+ d(pn, q) < sty =e

Since this holds for all € > 0, it follows that d(p, g) = 0, hence p = g. Therefore, the limit of a convergent

sequence in a metric space is unique. ]
Theorem 28
A subset S of a metric space (E, d) is closed if and only if, whenever p1, p2, p3, ... is a sequence of

ponints of S that is convergent if we have

Jm_pn €S

Proof. We will prove this theorem by proving both directions.

(=) Assume S is closed. We will prove that whenever pi, po, ps, ... is a sequence of ponints of S that is
convergent if we have
nlmmpn €S
For any € > 0, there exists N; € N such that for all n > Ny, d(pn, p) < €/2, and there exists
N> € N such that for all n > No, d(pp, q) < €/2. Let N = max{N1, No}. Then for all n > N, both
d(pn, p) < €/2 and d(pn, q) < €/2. By the triangle inequality,

€ €
d(p.q) < d(p.pa) +d(pn.q) < 5+ 5 =¢

Since this holds for all € > 0, it follows that d(p, q) = 0, hence p = q. Therefore, the limit of a

convergent sequence in a metric space is unique.

(<) Assume that whenever p1, p2, ps, . .. is a sequence of ponints of S that is convergent if we have
Jlim po € 5

We will prove that S is closed.

Proposition 29
In the metric space E* =R, d(a, b) = |a — b|.

Proof. Assume that limp_ o @y = @ and limp_ by = b. Then
e limpsoantby,=axb
M ||mn*)oo anbn = ab

“liMpyoe 2 = 2if b0

14
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10 Heine-Borel Theorem

Theorem 30
Any closed bounded subset of R" is compact.

Proof. This is a special case of closed rectangle, suppose
S = [a1by] - [a2b2] - x - [anby]

We have to prove that S is compact.

Now, we will assume that S is not compact meaning that S has an open cover {U,};c; that does not have
any finite subcover. Now we can divide the edges of S is 2. First, we can divide the edges of S into 2 parts.
Then we have 2" subrectangles. Since, {U;};c; does not have any finite subcover, then at least one of these
subrectangles does not have any finite subcover. We will call this subrectangle S;. Now, we can divide the
edges of S7 into 2 parts. Then we have 2" subrectangles. Since, {U;}c, does not have any finite subcover,
then at least one of these subrectangles does not have any finite subcover. We will call this subrectangle
S,. Continuing in this way, we get a sequence of nested closed rectangles S D S; D S, D 53 D ... such
that no Sk has a finite subcover from {U;};c;. Since, the diameter of Sy goes to 0 as k — oo, then the
intersection of all Sx contains exactly one point, say x. Since, {U;};c/ is an open cover of S, then there
exists U; such that x € U;. Since, U; is open, then there exists r > 0 such that B,(x) C U;. Since, the
diameter of S, goes to 0 as kK — oo, then there exists N such that for all kK > N, the diameter of Si is less
than r. Therefore, for all k > N, we have Sy C B,(x) C U;. This is a contradiction since Sy does not have

any finite subcover from {U;};c;. Therefore, S is compact. O

15



Example 31

Now, we will see a non-trivial example of a cantor set. Suppose, the set K € R/ is defined like this;

Ky =[0,1]
K2=10,3]U[3.1]
Ks=1[0,51U[5.31UI[5. §UI[S 1]

K, = Kp_1 with the middle third of each interval removed

K={)Kn
n=1

Fact 32

All intersections of finite collections of closed sets are closed.

Proposition 33

Let S1, S5, S3, ... be a sequence of non-empty closed bounded sets in R” such that 51 D S, D S3 D ...
and limy—00 diam(Sk) = 0. Then, the intersection (3=, Sk contains exactly one point.

10 January 30, 2026

We started off the the class with talking about the main theorems from the chapters for example

« Completeness : R is complete.

« Compactness: Any closed bounded subset of R is compact.

« Connectedness: Interval in R is connected.

Question 34. When is a set S C E is connected and when it is not connected?

N o

Connected set AU B is not connected

16



Definition 35 (Connected Set)
A set S C E is connected if it cannot be written as the union of two disjoint open sets. More formally,
S is not connected if there exist two disjoint open sets A, B C E such that

«c ANS#D
« BNS#0D
s ANB=10

« SCAUB

Theorem 36
R is conected.

Theorem 37
A nonempty subset S C R is connected if and only if it is a closed and bounded, and S has a max and

min element.

Proof. Because S is open and bounded means that S C B,(p) = (a,b) = (p—r, p+r) for some p € R and
r > 0. Now that, S bounded we know that it's bounded above. Now, since we know that S is closed that
means that S€ is open. If a ¢ S then we can write an open interval (a —¢€,a+¢€) C S for some € > 0.
Therefore, a is not a limit point of S. Therefore, a € 5. Therefore, S¢ is open. Therefore, S is closed.
Therefore, S is connected. ]

A1 = AN |a, b B1 = A°n|a, b
aeA\g ‘gbeB

Now, we define
Ai=AnNJa bl acA 3
By =A“NJa b] beB. (
A; is closed in R because A and [a, b] are closed and bounded and also non-empty because a € A and
b € B. Now, Bj is open in R because A€ is open and [a, b] is closed. Now, A; and Bj are disjoint because
AN B =1{. Now, A; UB; = [a, b] because A; C A and By C B. Therefore, A; U B; = [a, b]. Therefore,

A1 U By is connected. Therefore, A is connected.

Theorem 38

All intervals in R are connected.

Proof. We will prove this theorem by proving both directions.

(=) Assume that / is an interval in R. We will prove that / is connected.

17



(<) Assume that / is connected. We will prove that / is an interval.

Let / be an interval in R. We will prove that / is connected. Suppose, we have U,V C [, UUV = |,
UNV = 0. Since | is an interval, there exists a point x € / such that x € U and x € V. Therefore, [ is

disconnected, which is a contradiction. Therefore, | is connected. OJ
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11 Continous Functions
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Example 39

Consider the following functions:
1. f(x) =x?

This function is continuous on R. Its graph is the familiar parabola.
f(x)

f(x) =x°

2. f(x) = % -log(x)

This function is continuous on the interval (0, o).

f(x)

A~

f(x) = 5 log(x)

19




Example 40

Consider the space curve defined by the vector-valued function:
r(t) = (cost, sint, t), teR
This is a parametrization of a helix in R3, which is a continuous map from R to R3.

y

(Visualization of r(t) = (cost,sint, t) for 0 < t < 27)

Definition 41 (Continuous Function)

Let £ and E’ be metric spaces, with distances denoted by d and d’ respectively, let f : E — E’ be a
function. Then f is continuous at a point p € E if for every € > 0, there exists § > 0 such that for all
po € E with d(po, p) < 8, we have d’'(f(po), f(p)) < €. If f is continuous at every point in E, then f is
continuous on E.

Example 42
Consider the function f : R — R defined by f(x) = 1. We will prove that f is continuous at p = 1.

Proof. Let € > 0 be given. We need to find § > 0 such that for all x € R with d(x,1) < §, we
have d'(f(x),f(1)) < €. Let 6 = €. Then for all x € R with d(x,1) < §, we have d'(f(x),f(1)) =
|f(x) — (1) =|1 —1] =0 < €. Therefore, f is continuous at p = 1. O

Example 43
Consider the function f : R — R defined by f(x) = x. We will prove that f is continuous at p = 1.

Proof. Let € > 0 be given. We need to find § > 0 such that for all x € R with d(x,1) < §, we
have d'(f(x),f(1)) < €. Let 6 = €. Then for all x € R with d(x,1) < §, we have d'(f(x),f(1)) =
|f(x) — f(1)| = |x — 1| < €. Therefore, f is continuous at p = 1. O
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Example 44
Consider the function f : R — R defined by f(x) = x2. We will prove that f is continuous at p = 1.

Proof. Let € > 0 be given. We need to find § > 0 such that for all x € R with d(x,1) < 9, we
have d'(f(x), f(1)) < €. Let § = €. Then for all x € R with d(x,1) < §, we have d'(f(x),f(1)) =
If(x) — (1) = |x* = 1| = |x = 1||x + 1] < &|x + 1| < €|[x + 1| < €. Therefore, f is continuous at
p=1. O

Example 45
Consider the function f : R — R defined by f(x) = x3 4+ 2x — 3. We will prove that f is continuous at

p=1.
Proof. Let € > 0 be given. We need to find § > 0 such that for all x € R with d(x,1) < §, we

have d'(f(x), f(1)) < €. Let § = €. Then for all x € R with d(x,1) < §, we have d'(f(x), f(1)) =
IF(x)=fF(D)]=x3+2x—3—-(13+2-1-3)| = [x*+2x—3-0| = [x3+2x - 3| < §|x> + x + 1| < .

Therefore, f is continuous at p = 1. L]
Example 46
. . _ 0 ifx<o0 _ .
Consider the function f : R — R defined by f(x) = . We will prove that f is not uniformly
1 ifx>0

continuous at xg = 0.

Proof. Suppose, we have € > 0 be given. Suppose, we have § > 0 such that for all x € R with
d(x,0) < 0, we have d’(f(x),f(0)) < €. Let § =€. Then for all x € R with d(x,0) < §, we have
d'(f(x),f(0)) = |f(x)—f(0)] =|0—1| = 1 > €. Therefore, f is not uniformly continuous at xp = 0. [J
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